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 Abstract 

 Computational  models  are  an  essential  tool  for  understanding  the  origin  and  functions  of  the 
 topographic  organisation  of  the  primate  visual  system.  Yet,  vision  is  most  commonly 
 modelled  by  convolutional  neural  networks  that  ignore  topography  by  learning  identical 
 features  across  space.  Here,  we  overcome  this  limitation  by  developing  All-Topographic 
 Neural  Networks  (All-TNNs).  Trained  on  visual  input,  several  features  of  primate  topography 
 emerge  in  All-TNNs:  smooth  orientation  maps  and  cortical  magnification  in  their  first  layer, 
 and  category-selective  areas  in  their  final  layer.  In  addition,  we  introduce  a  novel  dataset  of 
 human  spatial  biases  in  object  recognition,  which  enables  us  to  directly  link  models  to 
 behaviour.  We  demonstrate  that  All-TNNs  significantly  better  align  with  human  behaviour 
 than  previous  state-of-the-art  convolutional  models  due  to  their  topographic  nature.  All-TNNs 
 thereby  mark  an  important  step  forward  in  understanding  the  spatial  organisation  of  the 
 visual brain and how it mediates visual behaviour. 



 Introduction 

 Artificial  neural  networks  (ANNs)  have  enabled  the  investigation  of  neuroscientific  questions 
 that  were  previously  beyond  the  scope  of  traditional  modelling  and  experimental  techniques 
 by  offering  a  way  to  design  models  that  are  image-computable,  and  task-performing,  while 
 bridging  levels  of  explanation  from  single  neurons  to  behaviour  1–3  .  In  vision,  the  most 
 commonly  used  networks  are  convolutional  neural  networks  (CNNs),  a  powerful  and  efficient 
 architecture  type  that  has  been  successful  at  predicting  primate  neural  activity  across 
 multiple  hierarchical  levels  of  the  ventral  stream  4–7  and  at  accounting  for  complex  visual 
 behaviour  8–11  . 

 However,  a  crucial  limitation  on  the  future  prospects  of  CNNs  as  neuroscientific  models  is 
 the  architecture’s  reliance  on  weight  sharing,  i.e.  CNNs  use  identical  features  across  visual 
 space.  This  strong  inductive  bias  is  sensible  for  engineering  purposes,  because  it  facilitates 
 efficient  learning  and  enables  spatially  invariant  object  recognition.  However,  this 
 architectural  design  choice  limits  their  ability  to  model  fundamental  aspects  of  biological 
 vision.  A  central  aspect  is  the  origin  and  function  of  cortical  topography  12,13  and  its  relation  to 
 behaviour  -  a  central  area  of  research  in  visual  neuroscience  for  which  modelling  promises 
 important insights that cannot easily be addressed using only experimental approaches. 

 In  the  brain,  topographic  organisation  refers  to  the  fact  that  the  spatial  arrangement  of 
 neurons  on  the  cortical  sheet  is  highly  structured  with  respect  to  their  tuning  profiles.  For 
 example,  early  visual  cortex  is  thought  to  be  organised  into  columnar  structures 
 (hypercolumns)  with  repeating  motifs  of  orientation  sensitivity  that  vary  smoothly  across  the 
 surface  14–16  .  In  higher-level  visual  cortex,  clusters  of  neurons  that  respond  preferentially  to 
 abstract  stimulus  categories,  such  as  faces  17,18  ,  bodies  19  ,  and  scenes  20–22  are  observed, 
 among  other  spatial  organisational  structures  based  on  a  variety  of  visual  and  conceptual 
 stimulus  properties  23–25  .  Human  visual  behaviour,  too,  exhibits  spatial  regularities,  with 
 objects  being  more  easily  recognized  when  displayed  in  their  typical  spatial  position  26–28  , 
 likely  arising  from  the  topographic  organisation  of  visual  cortex  with  joint  spatial  tuning  and 
 feature tuning determining visual efficiency. 

 The  emergence  of  topographies  and  its  interrelation  with  behaviour  cannot  directly  be 
 modelled  using  CNNs  due  to  their  spatially  enforced  weight  sharing,  leading  to  three 
 modelling  limitations  First,  synaptic  changes  in  CNNs  are  globally  orchestrated  to  form 
 identical  feature  selectivity  across  space,  which  is  in  stark  contrast  to  the  brain  where 
 synaptic  changes  across  the  cortical  topography  are  local.  Second,  CNNs  lack  a  clear 
 spatial  arrangement  similar  to  the  brain’s  cortical  sheet.  Third,  CNNs  do  not  exhibit  spatially 
 smooth  neural  tuning  transitions  as  found  in  the  brain.  Here  we  overcome  these  limitations 
 with  a  new  topographic  model  architecture,  which  we  term  All-Topographic  Neural  Network 
 (All-TNN).  All-TNNs  fulfil  the  following  desiderata  for  modelling  cortical  topographic 
 organisation: 

 1)  Locality:  Units  in  the  model  need  to  have  local  receptive  fields  (RFs)  that  are  learnt 
 individually and not enforced to be exact duplicates of other RFs. 

 2)  Arrangement  along  the  cortical  sheet:  The  spatial  smoothness  across  cortex  is 
 thought  to  be  due  to  a  smooth  decay  in  connectivity  between  neurons  with  increasing 
 cortical  distance  29,30  .  Units  in  the  model,  therefore,  need  to  be  arranged  along  an 
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 artificial  cortical  sheet,  and  the  spatial  distance  between  units  is  to  be  measured  in 
 this space. 

 3)  Smoothness:  There  is  a  continuum  from  spatially  discontinuous  models  where  each 
 unit  detects  a  different  feature,  to  spatially  uniform  models  where  all  units  detect  the 
 same  feature.  A  biologically  plausible  model  of  topographic  organisation  should 
 reflect  the  biological  observation  that  the  brain  operates  in  between  these  two 
 extremes  25,31–33  . 

 Across  a  set  of  experiments  with  this  architecture  and  a  novel  dataset  of  spatial  biases  in 
 human  visual  object  recognition,  we  demonstrate  that  All-TNNs,  in  contrast  to  current 
 state-of-the-art  CNNs,  more  accurately  capture  topographic  representations  in  the  primate 
 visual  system.  First,  they  reproduce  important  properties  (smooth  orientation  selectivity 
 maps,  cortical  magnification  and  category-selective  regions)  of  neural  topography  when 
 trained  on  visual  input.  Second,  All-TNNs  significantly  better  align  with  human  behaviour  by 
 reproducing  visual  field  biases  in  object  perception.  Lastly,  we  show  that  the  visual  behaviour 
 of All-TNNs is directly linked to their topography. 

 Results 

 To  study  the  emergence  of  feature  topographies  and  their  impact  on  behaviour,  we 
 developed  a  fully  topographic  neural  network,  All-TNN.  Contrary  to  CNNs,  All-TNNs  can 
 learn  locally  specific  weight  kernels  to  detect  different  features  across  visual  space  (Fig.  1, 
 desideratum  1).  As  a  result,  units  at  different  spatial  locations  are  free  to  learn  different 
 features,  making  it  possible  to  directly  compare  the  topographies  of  spatial  selectivity  maps 
 on  the  model’s  cortical  sheets  with  properties  of  topographies  found  in  the  brain.  In  addition, 
 units  of  each  network  layer  are  arranged  along  a  2D  cortical  sheet  (desideratum  2),  while 
 resembling  hypercolumnar  structure:  all  units  of  a  hypercolumn  share  the  same  local 
 receptive  field  location  (i.e.,  they  only  receive  connections  from  the  same  spatially  limited 
 area  in  the  layer  below).  To  navigate  the  continuum  from  spatially  discontinuous  to  spatially 
 uniform  feature  selectivity,  we  use  a  tunable  spatial  similarity  loss  that  acts  as  a  regularizer 
 encouraging neighbouring units to detect similar features (desideratum 3; see Methods). 

 In  our  experiments,  we  trained  All-TNNs  on  ecoset,  an  object  classification  dataset  that 
 contains  565  object  categories  selected  to  be  representative  of  concrete  categories  that  are 
 of  importance  to  humans  34  .  Training  for  object  categorisation  performance  while  satisfying 
 the  spatial  similarity  loss  results  in  a  dual-loss  objective,  which  forces  the  network  to  trade  off 
 between  i)  learning  varied  feature  selectivity  required  to  accomplish  a  difficult  object 
 categorisation  task,  and  ii)  preserving  similar  feature  selectivity  between  neighbouring  units. 
 In  our  experiments,  we  contrasted  multiple  instances  of  All-TNN  with  two  control  models: 
 purely  locally  connected  networks  (LCN,  i.e.  All-TNNs  without  spatial  similarity  loss),  and 
 CNNs.  To  make  sure  we  single  out  architectural  differences  in  our  analyses,  these  models 
 have  matching  numbers  of  units,  identical  hyperparameter  settings,  and  are  trained  on  the 
 same  dataset  and  task  (see  Methods).  We  train  multiple  seeds  of  each  network  type  that  we 
 treat as experimental subjects. 

 To  confirm  the  capacity  of  All-TNN  to  model  cortical  topography  and  its  relation  with 
 behaviour,  we  perform  in-silico  electrophysiology  analyses  hierarchically  from  low-level  to 
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 high-level  neural  topographical  characteristics,  and  then  move  onto  behavioural 
 experiments. 

 Figure  1  |  The  All-Topographic  Neural  Network  (All-TNN).  Example  topographic  layer 
 (top)  with  the  properties  of  local  connectivity,  2D  arrangement  and  spatial  weight  similarity 
 loss.  Units  are  arranged  retinotopically  into  ‘hypercolumns’,  and  units  in  a  given  hypercolumn 
 share  the  same  local  receptive  field  location.  The  spatial  similarity  loss  is  applied  to  weight 
 kernels  of  neighbouring  units  within  a  layer  (as  illustrated  for  one  unit  by  green  arrows).  The 
 All-TNN  architecture  (bottom)  used  in  our  experiments  consists  of  6  topographic  layers  of 
 different  dimensions  (indicated  by  numbers  along  the  layer  depictions)  and  kernel  sizes 
 (indicated  by  the  numbers  along  the  kernel  depiction),  of  which  layers  1,  3  and  5  are 
 followed  by  pooling  layers,  and  the  last  layer  is  followed  by  a  category  readout  (565 
 categories)  with  softmax.  The  network’s  learning  objective  is  the  sum  of  a  classification  loss 
 and a loss favouring local spatial similarity between unit kernels. 

 Topographical features of the ventral stream emerge in All-TNNs 

 V1  orientation  selectivity  maps  are  a  topographical  hallmark  of  the  primate  visual  system  12  . 
 We  thus  begin  our  investigation  by  determining  whether  the  model’s  first  layer  reproduces 
 the  features  of  smooth  orientation  selectivity  maps  in  V1.  To  determine  orientation  selectivity 
 for  each  unit  in  the  layer,  we  follow  the  standard  analysis  procedure  in  biological  systems  14 

 by  presenting  the  network  sinewave  gratings  of  different  angles  and  phases  (Fig  2a)  and 
 determining  the  angle  for  which  each  unit  is  most  responsive  (see  Methods).  We  find  that  the 
 first  All-TNN  layer  exhibits  a  smooth  distribution  of  orientation  selectivities,  mirroring 
 orientation  selectivity  maps  in  primate  V1  (see  Fig.  2a,  left  panel).  By  contrast,  CNN 
 architectures  do  not  exhibit  such  topography,  because  feature  selectivity  is,  by  definition, 
 identical  across  all  locations  in  the  layer  (Fig.  2a,  bottom  right  panel).  Importantly,  V1-like 

 3 



 selectivity  maps  also  did  not  emerge  in  the  locally  connected  control  network,  suggesting 
 that  such  a  topographical  organisation  does  not  emerge  purely  from  learning  to  categorise 
 natural  objects  under  the  influence  of  the  autocorrelation  of  the  input  statistics  (Fig.  2a).  In 
 addition,  while  V1-like  feature  selectivity  maps  require  training  (they  are  not  present  in  the 
 untrained  network),  they  emerge  early  and  remain  stable  after  only  a  few  epochs  (Fig.  S1a), 
 even  though  performance  keeps  increasing  after  the  topography  has  stabilized.  This 
 suggests  that  the  topographical  organisation  emerges  in  the  network  quickly,  with  further 
 training  only  finetuning  selectivities  within  this  topography  rather  than  bringing  about  broad 
 changes  in  the  overall  structure.  This  is  in  line  with  early  maturation  of  topographical 
 structures  in  visual  cortex  of  infants,  thought  to  provide  scaffolding  for  functional 
 selectivity  35,36  . 

 4 



 Figure  2  |  All-TNNs  mirror  key  features  of  the  visual  system’s  topography.  a.  The  first 
 layer  of  All-TNN  (example  network  instance)  shows  a  V1-like  organisation  of  orientation 
 selectivities,  while  the  two  control  architectures,  a  locally  connected  control  network  and  a 
 convolutional  network,  do  not.  b.  Entropy  visualisation  of  an  All-TNN  instance  mirrors 
 foveation  and  cortical  magnification  in  the  first  layer.  Entropy  decreases  with  eccentricity  in 
 all  seeds  of  All-TNN,  but  remains  constant  for  CNN  and  LCN  (data  averaged  across  all 
 seeds,  shaded  region  shows  the  95%  confidence  interval;  curves  overlap  for  LCN  and  CNN). 
 Selective  entropy-based  lesioning  confirms  cortical  magnification  (data  shown  averaged 
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 across  all  seeds,  error  bars  show  the  variance).  Classification  accuracy  is  more  affected 
 when  lesioning  50%  of  units  in  high-entropy  (i.e.  varied  selectivity)  regions  of  All-TNN,  than 
 lesions  performed  to  units  in  low-entropy  (i.e.  homogeneous  selectivity)  regions.  This  effect 
 of  cortical  magnification  is  neither  observed  for  the  locally  connected  control  network  nor  the 
 CNN.  c.  The  last  layer  of  All-TNNs  shows  clustering  of  high-level  category-based 
 selectivities  (d’)  for  tools,  scenes,  and  faces,  whereas  the  locally  connected  control  network 
 and  the  CNN  do  not  show  clustering  of  similarly  selective  units.  Results  and  maps  for  all 
 seeds can be viewed in Fig. S1-3. 

 Interestingly,  the  All-TNNs’  orientation  selectivity  maps  exhibit  a  strong  centre-periphery 
 organisation,  with  increasingly  smooth  feature  selectivity  towards  the  periphery.  To  quantify 
 the  observation  of  a  foveal  region  with  a  higher  diversity  of  feature  selectivities,  we 
 computed  feature-entropy  at  various  spatial  eccentricities  (Fig.  2b,  top  left  panel),  as  well  as 
 for  the  control  models  (Fig.  2b,  middle  right  panel).  Indeed,  we  observe  a  marked  decline  in 
 entropy  in  All-TNNs,  in  line  with  less  varied  feature  selectivity  in  the  periphery  (Fig.  2b,  top 
 right  panel).  In  contrast,  entropy  is  consistently  high  and  does  not  vary  for  control  networks, 
 which  are  not  able  to  pick  up  on  the  image  statistics  in  their  topography.  This  aspect  may  be 
 surprising  since  All-TNNs  do  not  have  a  central  bias  in  its  architecture  or  loss  terms.  Instead, 
 the  position  of  this  “foveal”  region  must  therefore  result  from  an  interplay  of  the  network’s 
 training  objective  with  the  statistics  of  the  training  dataset.  We  hypothesise  that  the  centre  of 
 the  images  contains  crucial  information  for  the  categorization  task,  which  forces  the  network 
 to  learn  varied  features  in  this  region  at  the  expense  of  feature  smoothness.  In  contrast,  the 
 network  favours  more  homogenous  visual  features  in  the  periphery,  because  less 
 categorization-relevant information is present there. 

 This  foveal  bias  is  reminiscent  of  cortical  magnification  in  humans,  with  more  neurons  per 
 degree  of  visual  angle  in  the  foveal  region  of  V1  than  in  the  periphery,  leading  to  better 
 acuity  in  the  fovea  37–39  .  This  allocation  of  more  resources  to  the  fovea  goes  hand  in  hand 
 with  the  fact  that  humans  fixate  on  relevant  regions  of  the  visual  field  through  eye 
 movements.  We  tested  whether  the  greater  diversity  of  foveal  selectivities  in  All-TNNs 
 reflects  additional  computational  resources  contributing  to  task  performance,  similar  to 
 human  cortical  magnification,  in  an  in-silico  lesion  study.  We  quantified  the  diversity  of 
 selectivities  at  each  location  on  the  sheet  by  computing  the  local  entropy  of  orientation 
 selectivity  in  a  sliding  window.  We  then  lesioned  50%  of  units  in  regions  with  homogenous 
 selectivities  (low  entropy  lesions)  or  varied  selectivity  (high  entropy  lesions)  (Fig.  2b,  bottom 
 panel;  see  Methods).  We  found  that  low-entropy  lesions  have  a  minor  effect  on  All-TNN 
 classification  performance  (accuracy  drop  to  90.91%  of  the  unlesioned  All-TNN 
 performance).  In  contrast,  high-entropy  lesions  strongly  deteriorate  classification 
 performance  (accuracy  drop  to  57.87%  compared  to  unlesioned  All-TNN).  This  shows  that 
 All-TNNs  can  afford  to  lose  units  in  the  peripheral  regions  with  homogenous  selectivities,  but 
 not  in  the  foveal  region  with  diverse  selectivities.  Neither  convolutional  nor  locally  connected 
 control  models  show  this  effect,  because  their  selectivity  profiles  are  homogeneous  (Fig.  2b, 
 middle  right  panel),  in  contrast  to  the  strong  topographical  structure  of  All-TNNs.  Hence,  only 
 All-TNNs  can  learn  a  topography  mirroring  the  training  image  statistics  to  selectively  process 
 relevant  parts  of  the  visual  field,  leading  to  a  spatial  organisation  reminiscent  of  cortical 
 magnification. 

 Having  investigated  lower-level  topographic  features  of  All-TNNs,  we  focus  on  higher-level 
 representations  and  analyse  whether  the  networks’  last  layer  reproduces  topographical 
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 features  characterizing  primate  higher-level  visual  cortex.  To  do  so,  we  contrast  unit 
 activations  in  response  to  faces,  tools,  and  places  (  ,  500  stimuli  each,  see  Methods)  -  𝑑  ' 
 image  classes  that  yield  clusters  of  neural  activation  in  primate  higher-level  visual 
 areas  17,18,20,21,23,36,40,41  .  After  model  training,  we  observe  smooth  model  regions  selective  for 
 faces,  places  and  tools  (Fig.  2c,  left  panel)  in  the  All-TNN.  Neither  of  the  control  models 
 shows  a  comparable  topography.  Instead,  they  develop  an  unstructured  salt-and-pepper 
 selectivity  map  without  any  clusters  (Fig.  2c,  bottom  right  panel).  Similarly  to  the  emergence 
 of  orientation  selectivity  in  the  first  layer  of  All-TNN,  this  topographic  organisation  into 
 category-selective regions requires training and stabilises early on (Fig. S3a). 

 Taken  together,  these  results  demonstrate  that  All-TNNs  consistently  reproduce  key 
 characteristics  of  primate  neural  topography  at  early  and  higher-level  visual  cortex,  including 
 V1-like  smooth  orientation  maps,  cortical  magnification,  and  category-selective  regions  in  the 
 final model layer. 

 All-TNNs better align with human spatial visual behaviour 

 Humans  reliably  show  visual  field  biases,  i.e.  objects  are  better  detected  and  recognized 
 when  they  appear  in  the  locations  they  are  most  often  experienced  in  26,27,42  .  Given  that,  akin 
 to  cortical  maps,  All-TNNs  have  the  ability  to  detect  different  features  in  different  parts  of  the 
 visual  field,  the  question  arises  whether  All-TNNs  exhibit  human-like  effects  of  spatial 
 position in their classification performance. 

 To  investigate  this  question,  we  collected  a  novel  dataset  of  spatial  biases  in  human  visual 
 object  recognition  (Fig.  3a).  Participants  (n=30)  classified  80  objects  from  16  classes  of  the 
 COCO  dataset  43  ,  which  were  presented  for  40ms  in  a  random  location  of  a  5x5  grid,  followed 
 by  a  Mondrian  mask  (see  Methods).  Masking  prevents  ceiling  effects  in  performance,  and 
 has  been  proposed  to  limit  recurrent  processing  in  humans  44  ,  which  is  ideal  as  a  testbed  for 
 our  current  set  of  feedforward  models.  Based  on  these  data,  we  computed  spatial 
 classification  accuracy  maps  for  each  individual  and  each  object  class  that  capture  the 
 spatial distribution of human classification performance (Fig. 3b). 

 We  performed  the  same  experiment  on  All-TNNs  and  our  control  models  (see  Methods;  note 
 that  LCN  control  models  are  not  considered  further  because  they  do  not  exhibit  meaningful 
 topographic  organisation).  Model  testing  was  based  on  all  images  in  COCO  for  a  given 
 class,  instead  of  only  5  exemplars  used  for  the  human  participants.  In  analogy  to  the  human 
 analyses,  accuracy  maps  were  computed  for  each  model  type,  instance,  and  object 
 category. 
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 Figure  3  |  An  experiment  testing  spatial  biases  in  human  visual  behaviour.  a  .  To  create 
 stimulus  materials  for  the  behavioural  experiment,  objects  from  COCO  are  segmented  from 
 their  background  and  placed  on  a  5x5  grid.  16  object  categories  consisting  of  5  object 
 exemplars  were  included  in  this  behavioural  dataset  (example  segmentations  shown).  Each 
 trial  contained  a  brief  stimulus  presentation  at  one  of  25  locations  on  the  screen,  followed  by 
 a  Mondrian  mask.  A  response  screen  showing  the  16  target  category  labels  was  presented 
 after  the  stimulus  and  mask  to  collect  participant  responses.  b.  Accuracy  maps  for  all  16 
 categories, averaged across participants (n=30). 

 As  a  first  step  to  understanding  spatial  visual  biases  in  both  humans  and  models,  we  verified 
 that  object  classification  performance  across  the  visual  field  is  aligned  with  the 
 corresponding  object’s  occurrence  statistics.  To  do  so,  we  correlated  the  object  occurrence 
 frequency  maps,  as  obtained  from  COCO  (see  Methods;  Fig.  S4),  with  the  classification 
 accuracy  maps  (Fig.  4a,  left  panel).  For  humans,  we  observe  a  positive  relationship  between 
 accuracy  maps  and  COCO  occurrence  frequency  maps  (Pearson  r=0.56;  Fig.  4a,  right 
 panel),  consistent  with  previous  research  26,27  .  All-TNNs  and  CNNs,  too,  exhibit  a  significant 
 correlation  between  accuracy  and  occurrence  frequency  (permutation  test  for  both  All-TNN 
 and  CNN,  n=1e5;  p  <0.001).  However,  the  strength  of  the  effect  observed  in  All-TNNs  was 
 significantly  closer  to  humans  compared  to  CNNs  controls  (Pearson’s  r;  r=0.45  for  All-TNN, 
 r=0.23  for  CNN,  permutation  test,  n=1e5;  p  <0.001).  This  indicates  that  the  alignment  of 
 performance and occurrence statistics is most similar to humans for All-TNNs than CNNs. 
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 Figure  4  |  All-TNNs  capture  spatial  statistics  of  objects,  matching  human  behaviour. 
 Data  from  human  participants  (n=30),  All-TNN  instances  (n=10)  and  CNN  controls  (n=10) 
 shown.  a  .  Humans  and  All-TNNs  show  a  stronger  alignment  (Pearson  correlation)  between 
 their  accuracy  maps  and  occurrence  frequency  maps  obtained  from  COCO  for  each  of  our 
 selected  16  categories,  as  compared  to  CNNs.  b  .  All-TNNs,  similarly  to  humans,  have  less 
 peaked  accuracy  maps  when  the  location  of  objects  is  more  variable.  Positional  uncertainty 
 for  each  of  our  16  categories  was  computed  as  the  image  area  required  to  cover  90%  of 
 object  occurrences  in  COCO.  Positional  variance  in  classification  performance  was 
 computed  by  the  accuracy  ratio  between  the  best  and  worst  classification  accuracy  for  a 
 given  object.  Robust  regression  indicates  a  significant  relationship  between  positional 
 variance  in  classification  performance  and  positional  uncertainty  across  16  categories  for 
 both  humans  and  All-TNNs,  but  not  CNNs.  A  negative  slope  indicates  a  decreasing  accuracy 
 ratio as a function of positional uncertainty. 

 To  further  characterise  positional  effects  and  their  relation  to  occurrence  statistics,  we 
 investigated  whether  positional  uncertainty  of  object  categories  in  natural  scenes  had  an 
 effect  on  human  and  model  accuracy  maps.  We  hypothesised  that  object  categories  with 
 stereotypical  locations,  i.e.  with  low  positional  uncertainty,  should  exhibit  stronger 
 behavioural  differences  across  space  due  to  stronger  position-dependent  tuning.  For  objects 
 that  occur  in  more  diverse  and  unpredictable  locations,  however,  behaviour  should  show 
 weaker  positional  effects.  We  operationalise  positional  uncertainty  as  the  size  of  the  region 
 where  the  object’s  occurrence  frequency  exceeds  90%  of  its  maximum  frequency,  and 
 positional  effects  on  classification  performance  as  the  ratio  between  the  locations  with  best 
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 and  worst  classification  accuracy  for  each  object  class  (Fig.  4b,  left).  We  then  tested  for  a 
 relationship  between  these  two  measures  via  robust  linear  regression,  and  analysed  the 
 estimated  slopes  for  average  humans,  All-TNNs,  and  CNN  controls  (Fig.  4b,  middle  and 
 right).  For  human  observers  we  observe  a  negative  relationship:  objects  with  low  positional 
 uncertainty  exhibited  stronger  positional  effects  on  accuracy  (robust  regression;  avg.  slope  = 
 -11.91;  95%  CI,  -22.56  -  -0.18).  Similar  effects  were  also  observed  for  All-TNNs  (robust 
 regression;  avg.  slope  =  -9.13;  95%  CI,  -18.86  -  -0.40;  permutation  test,  n=1e5;  p  <0.001).  In 
 contrast,  CNN  control  models  showed  much-reduced  effect  sizes  (robust  regression;  avg. 
 slope  =  -2.48;  95%  CI,  -7.15  -  4.95;  permutation  test,  n=1e5;  p  <0.001).  These  analyses 
 indicate  that  the  magnitude  of  the  positional  effect  on  classification  performance  varies  as  a 
 function  of  how  uniformly  distributed  object  occurrences  are,  with  All-TNNs  again  aligning 
 more closely to human behavioural patterns than CNN control models. 

 Figure  5  |  All-TNNs  mirror  spatial  biases  in  human  visual  behaviour.  a.  Alignment  of 
 accuracy  maps  of  humans  and  models  was  quantified  by  a  Pearson  correlation.  b.  All-TNNs 
 exhibit  significantly  better  alignment  with  human  accuracy  maps  than  CNNs.  Shown  are  the 
 noise-ceiling  corrected  agreements  of  All-TNNs  and  CNNs  with  human  accuracy  maps.  The 
 error bars show 95% confidence intervals. 

 Having  verified  that  humans  and  All-TNN  models  are  able  to  mirror  spatial  occurrence 
 statistics  in  their  behavioural  patterns,  we  next  tested  the  models’  ability  to  accurately  predict 
 human  accuracy  maps,  i.e.  variations  in  human  object  categorizations  across  the  visual  field. 
 For  this,  we  directly  compared  human  behavioural  and  model  accuracy  maps  through 
 category-wise  Pearson  correlation  analysis  (Fig.  5a).  We  find  that  All-TNNs  correlate 
 significantly  stronger  with  human  behavioural  patterns  than  CNN  controls  (  p  <0.001;  n=10; 
 Fig. 5b). 

 Could  this  pattern  of  results  be  caused  by  a  simple  centre  bias  instead  of  richer  structure 
 with  different  maps  for  different  categories?  To  determine  whether  this  is  the  case,  or 
 whether  the  behavioural  alignment  is  more  precise  and  indeed  object  specific,  we 
 constructed  accuracy  dissimilarity  matrices  (ADMs),  by  computing  the  Pearson  correlation 
 distance  between  all  object-specific  accuracy  maps  (Fig.  6a).  This  analysis  is  akin  to 
 representational  similarity  analysis  45  ,  but  based  on  our  accuracy  maps,  highlighting  in  how 
 far  pairs  of  categories  exhibit  similar  or  different  accuracy  maps.  ADMs  are  compared 
 between  humans  and  models  via  Spearman  correlation.  Correlating  ADMs  focuses  on 
 differences  between  accuracy  maps.  Indeed,  features  shared  between  accuracy  maps,  such 
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 as  central  biases,  would  show  up  as  a  constant  in  the  ADM  (all  ADM  cells  are  impacted  by 
 this  one  shared  aspect).  Constants,  however,  do  not  affect  ADM  comparisons  using 
 Spearman  correlations.  In  short,  our  analysis  approach  of  comparing  ADMs  focuses  on 
 differences  in  accuracy  maps  across  object  categories  and  thereby  moves  the  analysis 
 beyond  similarities  that  are  category-agnostic.  As  shown  in  Figure  6b,  ADM  agreement 
 between  human  data  and  All-TNNs  is  significantly  higher  than  between  humans  and  CNN 
 controls  (permutation  test,  n=1e5;  p  <0.01).  This  confirms  that  visual  classification  behaviour 
 of  All-TNNs  aligns  with  human  behaviour  in  a  category-specific  manner  rather  than  merely 
 reflecting a central bias effect. 
 ̀ 

 Figure  6  |  All-TNNs  mirror  object  specific  spatial  biases  in  human  visual  behaviour.  a  . 
 Accuracy  dissimilarity  matrices  (ADMs)  were  created  to  capture  the  differences  between 
 accuracy  maps  of  all  objects  using  Pearson  correlation  distance  (left).  Behaviourally  more 
 similar  objects  have  a  low  dissimilarity  in  their  accuracy  maps,  whereas  objects  yielding 
 behaviourally  distinct  accuracy  maps  have  high  dissimilarity.  To  relate  the  ADMs  of  average 
 humans,  All-TNNs,  and  CNNs  with  each  other  they  are  correlated  using  Spearman 
 correlation  (right).  b  .  ADMs  of  All-TNNs  align  significantly  better  with  human  data  than  those 
 of CNNs. 

 Engagement of stereotypical unit activation patterns links topography to behaviour 

 When  trained  on  natural  scenes,  All-TNNs  develop  units  that  are  selective  for  different 
 categories  in  different  spatial  locations.  The  behavioural  experiment,  however,  relied  on 
 small  cropped  objects  presented  in  different  locations  -  a  setting  quite  different  from  the 
 natural  images  of  ecoset  (Fig.  7a,  top  panel).  This  discrepancy  offers  the  unique  opportunity 
 to directly link the human-like behaviour of All-TNNs to their topographical arrangement. 
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 Figure  7  |  Human-like  accuracy  patterns  are  linked  to  topography  in  All-TNNs.  a  .  The 
 engagement  of  stereotypical  unit  activation  patterns  by  objects  presented  in  various 
 locations  was  determined  by  computing  a  cosine  similarity  between  the  corresponding 
 activity  maps  of  the  respective  network  instances  (All-TNNs,  and  CNN  controls).  In  addition, 
 we  extracted  classification  accuracy  for  all  locations.  b  .  Relating  engagement  to  accuracy  via 
 linear  regression  with  bootstrapping  demonstrates  that  All-TNNs  exhibit  a  positive 
 relationship:  stronger  engagement  of  stereotypical  unit  patterns  yield  higher  classification 
 accuracy. This was not observed for CNNs. 

 To  investigate  this  aspect,  we  recorded  average  unit  activation  maps  of  the  final  network 
 layer  for  each  object  category,  based  on  the  ecoset  test  set.  We  call  these  stereotypical 
 activation  maps,  as  they  reflect  the  model’s  response  pattern  to  images  from  the  distribution 
 of  images  of  a  given  category  on  which  it  was  trained.  We  then  recorded  the  unit  activation 
 maps  for  each  stimulus  from  the  behavioural  experiment  (i.e.  each  object  category, 
 presented  in  each  of  the  25  locations  of  the  behavioural  experiment;  see  Methods),  and 
 averaged  responses  across  images  for  each  location  and  category.  We  call  these  the 
 experimental  unit  activation  maps,  reflecting  the  model’s  responses  to  ouf-of-distribition 
 images  used  in  the  behavioural  experiment.  Comparisons  of  the  stereotypical  activation 
 maps  to  the  activation  patterns  observed  during  the  experimental  setting  enabled  us  to  test 
 in  how  far  the  network’s  better  performance  for  some  locations  was  due  to  it  engaging  the 
 right  topographic  features.  Category-specific  activation  maps  for  the  stereotypical  setting 
 were  compared  to  the  25  experimental  locations  using  cosine  similarity  (Fig.  7a).  If  the 
 behavioural  effects  observed  in  All-TNNs  are  driven  by  their  topographical  layout,  then 
 locations  with  a  better  alignment  of  the  stereotypical  and  experimental  activations  maps 
 should  have  a  better  classification  accuracy.  Collapsing  data  across  categories  and 
 locations,  we  find  that  this  is  indeed  the  case  (linear  regression  with  bootstrapping, 
 slope=0.88;  permutation  test,  n=5e5;  p  <0.001;  Fig.  7b).  In  other  words,  stimuli  are  well 
 classified  when  they  successfully  engage  the  right  topographic  regions  of  the  last  layer.  In 
 contrast  to  this,  we  found  that  CNNs  do  not  show  a  significant  relationship  between  unit 
 activation  patterns  and  recognition  accuracy  (linear  regression  with  bootstrapping, 
 slope=0.40;  permutation  test,  n=5e5;  p  >0.05).  These  results  tie  together  the  two  previous 
 results  of  the  paper:  the  human-like  neural  topographies  of  All-TNNs  explain  their  more 
 human-like behavioural patterns. 
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 Discussion 

 Here  we  introduce  and  test  a  new  artificial  neural  network  architecture,  All-TNN,  that  is 
 capable  of  modelling  topographic  aspects  of  primate  vision  and  their  behavioural 
 consequences.  All-TNNs  fulfill  three  desiderata  for  topographical  models  of  the  visual 
 system:  (1)  units  with  local  receptive  fields  and  independently  learnt  kernels,  (2)  units 
 arranged  on  a  2D  cortical  sheet  and  (3)  spatially  smooth  feature  selectivity.  This  endows 
 All-TNNs  with  genuine  topography  that  goes  beyond  current  state-of-the-art  CNN  models 
 that instead copy and paste identical features across locations. 

 Using  in-silico  electrophysiology  across  the  hierarchical  levels  of  All-TNNs,  we  show  that 
 they  develop  key  features  of  topographic  organisation  reminiscent  of  both  lower-  and 
 higher-level  areas  of  the  visual  cortex.  We  find  that,  unlike  non-topographical  control 
 networks,  All-TNNs  tune  to  spatial  occurrence  statistics,  produce  smooth  orientation 
 selectivity  maps  and  category-specific  topographical  organisation.  This  shows  that  our 
 simple  spatial  smoothness  constraint  is  sufficient  for  All-TNNs  trained  on  natural  images  to 
 model  primate  topographies  across  levels.  Our  modelling  results  lend  support  to  the  idea 
 that  topography  in  the  visual  cortex  may  result  from  the  tendency  of  spatially  neighbouring 
 neurons  to  learn  similar  features,  which  leads  to  a  clustering  of  neurons.  Indeed,  the  spatial 
 loss  that  we  impose  upon  the  network  is  in  line  with  experiments  that  show  that  neurons 
 preferably connect to neurons with similar orientation selectivity in mammals  46–48  . 

 A  surprising  property  of  All-TNNs  is  a  strong  centre-periphery  topography,  with  increasingly 
 smooth  feature  selectivity  towards  the  periphery.  This  pattern  is  reminiscent  of  cortical 
 magnification  and  could  be  explained  by  the  trade-off  between  the  classification  and  spatial 
 loss:  affected  by  dataset  statistics,  the  network  learns  to  detect  varied  features  at  the 
 expense  of  spatial  smoothness  in  the  foveal  region.  The  observation  that  All-TNNs  can 
 afford  to  lose  units  in  the  periphery  becomes  of  interest  when  considering  that  the  brain 
 operates  under  a  limited  energy  budget  and  hence  likely  optimises  for  energy 
 consumption  49,50  .  Our  results  support  the  hypothesis  that  cortical  magnification  emerged 
 through  evolution  as  an  optimal  topography  to  trade  off  visual  performance  and  neural 
 energy consumption in animals that foveally fixate on relevant objects  39  . 

 Similarly,  the  finding  that  All-TNNs  show  structured,  yet  varied,  representations  in  the  last 
 layer  can  be  tied  to  the  hypothesis  that  the  high-level  organisation  in  IT  balances  feature 
 variety  and  homogeneity  24  .  Again,  the  emergence  of  category-selective  clusters  can  be  seen 
 as  satisfying  a  trade-off  between  the  need  for  varied  feature  detectors  and  the  tendency  to 
 have smooth selectivities. 

 Our  results  further  reveal  a  similarity  in  the  developmental  principles  and  trajectory  of 
 All-TNNs  and  the  primate  brain.  The  topographic  organisation  throughout  the  layers  of 
 All-TNN  arises  early  during  training  and  stabilises  quickly,  while  the  network  continues  to 
 increase  its  classification  performance  subsequently.  This  indicates  that  the  topographical 
 organisation  offers  a  stable  structure  while  still  allowing  for  enough  flexibility  for  task  learning 
 throughout  training.  This  is  similar  to  the  primate  visual  cortex  where  early  maturation  of 
 important  architectural  structures  is  thought  to  provide  scaffolding  for  functional 
 selectivity  23,35,36  . 
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 LCN  controls,  which  have  an  identical  architecture  to  All-TNNs,  but  lack  the  spatial  similarity 
 loss  do  not  develop  topographic  features  that  are  similar  to  the  brain,  despite  being  trained 
 on  the  same  dataset  and  categorization  objective.  This  ties  into  an  important  current  debate 
 about  which  aspects  of  the  visual  system's  structure  are  genetically  hardwired,  and  which 
 require  experience  36,51  ,  and  lends  support  to  the  idea  that  both  visual  expertise  (here: 
 dataset)  and  the  right  inductive  biases  (here:  architecture  and  spatial  loss)  are  necessary 
 driving  factors  for  the  emergence  of  functional  topographies  in  the  brain.  All-TNNs  thus  invite 
 further  modelling  of  the  visual  cortex  and  beyond  52  ,  taking  developmental  genesis  into 
 account  through  systematic  manipulations  of  architectural  features,  loss  functions,  or  training 
 datasets  to  uncover  principles  and  mechanisms  underlying  the  maturation  of  brain  structure 
 and behaviour in the visual system  53  . 

 Importantly,  the  topographic  features  of  All-TNNs  are  central  to  replicating  important  aspects 
 of  human  behaviour.  Humans  can  exploit  spatial  regularities  in  the  typical  locations  of 
 objects,  which  may  be  an  adaptive  strategy  to  reduce  the  computational  load  and  enhance 
 visual  efficiency  in  complex  environments  26  .  In  line  with  this  strategy,  neural  representations 
 are  better  decodable  and  perceptual  sensitivity  is  higher  when  objects  appear  at  locations 
 that  match  their  typical  positions  in  the  world,  allowing  objects  to  be  more  easily  detected 
 and  recognized  when  presented  in  expected  locations  26,54  .  We  find  that  All-TNNs  are  closer 
 to  human  visual  behaviour  in  this  setting,  due  to  how  their  topographical  organisation 
 impacts object recognition. 

 The  ability  of  All-TNNs  to  link  topographies  to  behaviour  allows  for  new  research  directions. 
 An  obvious  hypothesis  to  test  is  that  if  certain  objects  have  more  importance  than  others 
 during  training,  they  may  take  up  more  space  in  the  topography,  which  in  turn  may  account 
 for  biases  in  behaviour  55–57  .  As  another  example,  the  spatial  topography  of  All-TNNs  allows 
 for  targeted  lesioning  of  its  organised  parts,  such  as  the  face-selective  units  in  the  later 
 layers.  This  allows  using  All-TNNs  to  model  brain  lesions  58  with  potential  for  clinical  impact, 
 and  a  model  of  virtual  lesioning  methods  such  as  Transcranial  Magnetic  Stimulation  (TMS)  59  , 
 providing  insights  into  the  underlying  mechanisms  and  effects  of  such  experimental 
 interventions. 

 All-TNNs  complement  other  recent  approaches  to  modelling  topography  in  the  visual 
 system  30,41,60–66  ,  which  have  greatly  contributed  to  our  understanding  of  cortical  map 
 formation.  One  limitation  of  most  existing  models  of  topographic  organisation  is  that  they  are 
 either  truly  topographic  but  not  task-performing  or  task-performing  but  not  truly  topographic. 
 Examples  of  the  former  are  hand-crafted  self-organising  maps  13,67,68  .  The  latter  are  most 
 often,  if  not  always,  based  on  augmenting  CNNs,  for  example  by  adding  a  spatial  remapping 
 to  their  units,  building  self-organising  maps  based  on  unit  activities,  or  creating  multiple  CNN 
 streams  30,60,61,64–66  .  While  we  strongly  agree  that  CNNs  can  provide  important  insight  into 
 functional  organisation,  such  models  do  rely  on  biologically  implausible  weight  sharing  rather 
 than  genuine  topography.  All-TNNs  are  a  promising  approach  to  overcome  this  limitation,  as 
 they are both mechanistically truly topographic and task performing. 

 The  current  work  has  several  limitations.  First,  the  spatial  similarity  loss  that  we  used  to 
 encourage  neighbouring  units  to  learn  similar  features  may  not  capture  the  mechanism  of 
 smoothness  in  topographic  organization  and  the  exact  spatial  arrangement  of  topography  in 
 the  brain.  Future  work  using  All-TNNs  as  a  starting  point  can  explore  how  smooth  maps  can 
 emerge  naturally  from  model  training,  without  imposing  a  secondary  spatial  similarity 
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 constraint  explicitly.  Possible  avenues  include  using  more  biologically  plausible  constraints, 
 such  as  wiring  length  optimization  30,64,69  ,  energy  constraints  50  ,  cortical  size  13,70  ,  or  recurrent 
 connectivity  patterns.  Second,  the  current  set  of  models  is  trained  on  a  supervised 
 classification  objective,  whereas  primate  visual  learning  likely  relies  on  unsupervised  signals, 
 too  71–73  . 

 In  conclusion,  All-TNNs  are  a  promising  new  class  of  models,  which  address  questions  that 
 are  beyond  the  scope  of  CNNs,  and  could  serve  as  more  accurate  models  of  functional 
 organisation in the visual cortex and its behavioural consequences. 

 Methods 

 Neural network architectures and training 

 All-Topographic Neural Network 

 Each  layer  in  All-TNNs  is  arranged  as  a  2D  sheet,  where  each  unit  has  its  own  receptive 
 field  and  set  of  weights  (i.e.,  there  is  no  weight  sharing,  unlike  in  CNNs).  Units  in  the  same 
 “hypercolumn”  share  the  same  receptive  field.  These  aspects  mirror  well-known 
 characteristics  of  the  visual  system.  In  practice,  this  is  implemented  by  subclassing 
 tensorflow’s  LocallyConnected2D  layer.  This  layer  is  arranged  in  a 

 3D  structure,  identical  to  CNNs,  but  without  weight  sharing.  ℎ𝑒𝑖𝑔ℎ𝑡    ×     𝑤𝑖𝑑𝑡ℎ    ×     𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 
 To  convert  this  3D  LocallyConnectedLayer  to  our  2D  All-TNN  layer,  we  “unfold”  each  channel 
 to  a  2D  square,  giving  rise  to  a  2D  sheet  with  the  𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 *  ℎ𝑒𝑖𝑔ℎ𝑡    ×  𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 *  𝑤𝑖𝑑𝑡ℎ 
 desired characteristics. 

 In  addition,  each  layer  has  a  spatial  similarity  loss,  which  promotes  similar  selectivity  for 
 neighbouring  units  and  is  crucial  for  the  emergence  of  topography  (as  evident  in  Figure  2).  In 
 detail,  this  spatial  similarity  loss  is  computed  as  the  average  cosine  distance  between  the 
 weight kernels of neighbouring units in each layer. 

 The  total  loss  that  the  model  aims  to  minimize  is  a  composite  of  two  losses:  the 
 categorization  cross-entropy  loss  (equation  1),  and  the  spatial  similarity  loss  (summed  over 
 all  layers;  equation  2).  The  spatial  loss  is  multiplied  by  a  factor  that  determines  the  additive α
 weight of the spatial loss. 
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 where  is  the  weight  kernel  of  the  unit  at  the  position  on  the  2D  sheet,  denotes  the  𝑤 
 𝑖 ,    𝑗 

 𝑖 ,     𝑗  𝑁 
 𝑙 

 total  number  of  units  in  layer  ,  is  a  hyperparameter  in  layer  that  determines  the  𝑙    α
 𝑙 

 𝑙 

 magnitude of the spatial similarity loss, and  is the total number of layers in the network..  𝐿 

 The  All-TNNs  we  used  consist  of  6  such  layers,  of  which  layers  1,  3,  and  5  are  followed  by  2 
 by  2  pooling  layers.  Each  layer  is  subject  to  L2  regularisation  with  a  factor  of  1e-6,  and  is 
 followed  by  layer  normalisation  and  a  rectified  linear  unit.  We  used  a  spatial  loss  of α =  10 
 in  all  layers  except  the  final,  which  for  which  we  used  ,  due  to  increased  smoothness α =  10 
 observed  in  the  higher  visual  cortex.  We  used  an  Adam  optimiser  with  a  learning  rate  of 
 0.001  and  =0.1.  and  a  regularisation  ratio  of  1e-6.  Weights  are  initialised  with  Xavier ϵ
 initialisation.  A  dropout  of  0.2  is  applied  to  all  layers  during  training.  See  Figure  1  for  the 
 specific layer and kernel sizes. 

 Locally connected control model 
 As  a  control  for  the  effect  of  the  spatial  loss,  we  also  train  two  All-TNNs  with  identical 
 hyperparameters  but  without  spatial  loss  (  ),  meaning  that  the  model  trains  with  only α   =     0 
 the task loss (cross-entropy). 

 Convolutional control model 
 Our  convolutional  controls  have  the  same  number  of  layers,  number  of  units  and 
 hyperparameters  as  our  All-TNNs.  The  spatial  similarity  loss  is  not  (and  cannot  be)  enforced 
 in this model. It is thus trained with only the cross-entropy loss. 

 Dataset & training 
 Each  model  is  trained  on  the  ecoset  training  set  (see  subsection  Stimuli  ).  The  images  were 
 input  to  the  networks  with  a  resolution  of  150x150  pixels.  Given  that  “individual  differences” 
 exist  between  ANNs  74  ,  we  trained  multiple  instances  of  each  network  type  with  different 
 random  seeds,  which  are  treated  as  experimental  subjects.  For  All-TNNs  and  CNNs,  we 
 trained  10  instances.  For  LCNs  (i.e.  All-TNNs  without  spatial  loss),  we  only  trained  two 
 network instances due to resource constraints. All models are trained for 600 epochs. 

 All  models  are  custom-made,  implemented  and  trained  in  Python  v.3.10  with  Tensorflow 
 v.2.8 using NVIDIA A100 GPUs. 

 Stimuli 

 Training dataset 
 The  All-TNN  models  and  CNN  control  models  were  trained  using  the  ecoset  dataset  34  .  The 
 ecoset  dataset  consists  of  1.5  million  ecologically  motivated  images  from  565  categories.  It 
 was  shown  that  networks  trained  on  ecoset  better  predict  activities  in  the  human  higher 
 visual  cortex  than  networks  trained  on  Imagenet  (ILSVRC-2012),  making  it  a  good  choice  for 
 modelling the influence of natural image statistics on the emergence of cortical topography. 

 Selectivity analysis dataset 
 To  determine  high-level  object  selectivity  in  the  last  layer  of  the  models,  we  selected  500 
 images  for  each  superclass  used  to  test  selectivity  (faces,  places  and  tools).  The  places  and 
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 tools  images  are  selected  from  the  10  most  common  classes  for  the  respective  superclass 
 found in ecoset validation set. The faces are taken from the VGG-Face dataset  75  . 
 Places  : ‘House’, ‘City’, ‘Kitchen’, ‘Mountain’, ‘Road’,  ‘River’, ‘Jail’, ‘Castle’, ‘Lake’, ‘Iceberg’ 
 Tools  : ‘Phone’, ‘Gun’, ‘Book’, ‘Table’, ‘Clock’, ‘Camera’,  ‘Cup’, ‘Key’, ‘Computer’, ‘Knife’ 
 Faces  : 10 identities taken from the VGG-Face dataset  75  . 

 Stimuli for the behavioural experiment 
 The  spatial  classification  behaviour  of  humans,  All-TNNs,  and  control  models,  was  evaluated 
 using  segmented  objects  from  the  COCO  (Common  Objects  in  Context)  dataset  43  .  This  is  a 
 large-scale  image  dataset,  gathered  from  everyday  scenes  containing  common  objects,  and 
 the  objects  in  this  natural  sense  are  precisely  labelled,  and  provided  with  segmentation 
 masks, bounding box and keypoint annotations. 

 Easy  segmentation  of  objects  from  pixel-wise  segmentation  masks  in  COCO  motivates  the 
 use  of  this  dataset  for  behavioural  testing.  The  stimuli  set  consists  of  16  categories  that 
 occur  in  both  ecoset  and  COCO.  These  categories  are:  'airplane',  'bear',  'broccoli',  'bus',  'cat', 
 'elephant',  'giraffe',  'kite',  'laptop',  'motorcycle',  'pizza',  'refrigerator',  'scissors',  'toilet',  'train', 
 and  'zebra'.  Each  category  contains  5  exemplars,  selected  for  having  similar  illumination.  To 
 control  for  visual  confounds,  all  stimuli  images  were  resized  to  equal  size  and  cropped  onto 
 grey  backgrounds.  Note  that  we  only  used  5  stimuli  per  class  in  our  human  experiment  due 
 to  time  limitations,  but  when  we  conduct  a  similar  experiment  on  our  networks  as  described 
 below, we use all COCO stimuli for each class, at each 5x5 location instead. 

 Behavioural experiment 

 To  assess  the  correspondence  between  the  behaviour  of  All-TNN,  the  CNN  control  model, 
 and  human  behaviour,  we  collected  human  behavioural  responses  to  one  image  dataset. 
 This  allowed  for  a  comparison  of  the  correlation  of  behavioural  responses  to  the  same 
 stimuli between All-TNN, the CNN control model, and human behaviour. 

 Participants 
 30  healthy  adults  (aged  21-30  years,  mean=25.47  years,  SD=2.5  years;  17  female) 
 participated  and  completed  the  visual  classification  task.  All  participants  had  normal  or 
 corrected-to-normal  visual  acuity.  Prior  to  participation,  ethical  approval  for  the  study  was 
 obtained  to  ensure  compliance  with  ethical  guidelines.  All  participants  provided  written 
 informed  consent  and  received  monetary  compensation  or  course  credits  for  their 
 participation. 

 Experiment design 
 The  participants  were  asked  to  detect  and  classify  the  object  that  presented  on  screen.  The 
 images  used  were  215x215  pixels,  calculated  based  on  a  5-degree  visual  angle  and  a  65  cm 
 screen  distance.  Stimuli  randomly  occurred  in  one  of  the  25  positions  on  a  5  by  5  grid  on  the 
 screen  for  40ms.  The  location  of  the  stimulus  was  then  masked  with  a  Mondrian  mask  for 
 300ms.  The  participants  were  then  presented  with  a  response  panel  showing  the  16 
 category  names  after  the  mask  disappeared,  after  which  they  had  2150  ms  to  click  on  the 
 category  name  that  matched  what  they  saw  before  the  mask.  Feedback  was  given  after 
 each  trial:  the  right  category  name  was  displayed  in  a  green  font  colour  if  the  participants 
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 were  correct,  and  in  red  if  they  were  incorrect.  The  experiment  consisted  of  2000  trials  in 
 total:  each  object  exemplar  was  shown  one  time  in  each  location  (i.e.  for  each  of  the  16 
 categories,  all  5  object  exemplars  are  presented  25  times).  The  order  of  stimulus 
 presentation  was  randomised  between  participants.  Each  trial  took  around  2.5s,  and  after 
 each  set  of  200  trials,  there  was  a  2-minute  pause.  The  total  experiment  took  3  hours  in 
 total. 

 Note  that  we  only  used  5  stimuli  per  class  in  our  human  experiment  due  to  time  limitations, 
 but  when  we  conduct  a  similar  experiment  on  our  networks  as  described  below,  we  use  all 
 COCO stimuli for each class, at each 5x5 location instead. 

 Data recording and processing 
 The  stimulus  presentation  in  the  behavioural  experiment  was  controlled  using  the 
 Psychtoolbox  76  in  Matlab.  We  recorded  the  human  behavioural  data  for  each  object  class  in 
 each  location  into  5x5  accuracy  maps.  We  also  collected  the  same  data  for  our  models.  This 
 involved  presenting  the  models  with  each  object  exemplar  at  each  location  and  recording 
 their classification performance for each position into accuracy maps. 

 Data analysis 

 Orientation selectivity 
 To  determine  the  orientation  selectivity  of  units  in  the  first  layer  of  the  models,  we  present 
 grating  stimuli  at  8  angles  (equally  spaced  between  0  and  180  degrees)  to  the  models  and 
 record  the  elicited  activity.  The  gratings  have  a  spatial  wavelength  of  3  pixels,  allowing  for  >1 
 cycle  within  each  receptive  field  in  the  first  layer  of  our  networks.  For  each  grating  angle,  and 
 for  each  network  unit,  we  present  various  phases,  and  pick  the  phase  that  maximizes  the 
 unit’s  activation  response  to  the  grating,  to  find  the  best  alignment  between  the  stimulus  and 
 weight  kernel.  We  combine  the  resulting  8  activities  (one  per  angle)  vectorially  projecting 
 each  angle  onto  a  circle  and  multiplying  it  by  the  corresponding  activity,  and  taking  a 
 weighted  sum  of  these  vectors  (a  widespread  method  for  measuring  orientation  selectivity  in 
 electrophysiology  77,78  ).  Intuitively,  if  all  stimulus  angles  elicit  similar  activities,  these  vectors 
 will  cancel  out,  while  there  will  be  a  clear  winner  otherwise.To  visualise  orientation  maps  (as 
 well  as  the  entropy  and  category  selectivity  maps)  for  CNNs  the  kernels  are  flattened  into  a 
 2D-sheet in an identical manner as to the flattening of the All-TNN prior to training. 

 Cortical Magnification 
 To  quantify  the  diversity  of  selectivities  at  each  location  in  the  first  layer  of  our  models,  we 
 calculated  entropy  in  a  3x3  sliding  window  for  each  retinotopic  position  on  the  orientation 
 selectivity  maps.  Units  that  do  not  respond  to  any  of  the  grating  stimuli  are  excluded  from 
 this  analysis.  Preferred  orientations,  computed  as  described  above,  are  discretized  into  8 
 equally  spaced  orientation  bins,  which  are  used  to  compute  the  entropy.  This  yields  a  map 
 showing  how  varied  unit  responses  are  (e.g.  the  entropy  is  low  if  all  units  in  the  sliding 
 window have similar preferred orientations). 

 To  test  if  the  network  can  afford  to  lose  units  in  regions  with  lower  entropy  (i.e.  more 
 redundant  coding),  we  perform  an  entropy-based  lesion  experiment.  We  use  the  entropy 
 map  described  above  and  lesion  the  50%  lowest  entropy  units,  and  measure  the 
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 performance  of  the  lesioned  network  on  the  validation  set  of  ecoset.  As  controls,  we  perform 
 the same test, but lesion the 50% highest entropy units. 

 Category selectivity 
 We  computed  the  selectivity  of  each  unit  in  the  last  layer  of  our  networks  to  scenes,  tools 
 and  faces  using  the  d’  signal  detection  measure  (see  subsection  Stimuli  for  the  images  we 
 used): 
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 activations  of  the  unit  in  response  to  stimuli  from  the  other  categories.  The  variances  for  both 
 distributions  are  assumed  to  be  in  a  similar  range,  therefore  we  average  over  the  variance  of 
 the two distributions in the denominator. 

 Positional occurrence maps 
 We  generated  maps  that  quantify  the  frequency  of  occurrence  at  each  image  location  of 
 each  of  the  16  COCO  categories  we  use  in  the  behavioural  experiment  (see  Fig.  S4a).  To  do 
 so,  we  use  the  binary  segmentation  masks  provided  by  COCO  for  each  category,  and  take 
 their  average  across  the  whole  dataset.  These  maps  are  then  downsampled  to  5x5  using 
 average  pooling,  to  match  the  dimensionality  of  accuracy  maps  derived  from  behavioural 
 experiments. 

 Positional Uncertainty 
 Positional  uncertainty  is  derived  from  the  positional  occurrence  maps  described  above 
 before  downsampling  to  5x5.  We  define  positional  uncertainty  as  the  area  of  the  locations  for 
 which  the  occurrence  frequency  is  larger  than  90%  of  the  highest  frequency  position  (see 
 examples  in  Fig.  S5).  A  small  positional  uncertainty  thus  means  that  the  stimulus  instances 
 of  an  object  category  often  occur  in  the  same  positions,  while  a  lard  positional  uncertainty 
 means that the object appears in varied positions. 

 Accuracy Ratio 
 The accuracy ratio measures the overall magnitude of positional effects on behavioural 
 performance as the accuracy at the location with the best accuracy divided by the accuracy 
 at the location with the worst accuracy in the accuracy map. 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦     𝑟𝑎𝑡𝑖𝑜    =    
 𝑎𝑐𝑐𝑢𝑟𝑎𝑐  𝑦 

 𝑏𝑒𝑠𝑡 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐  𝑦 
 𝑤𝑜𝑟𝑠𝑡 

 Accuracy Map Agreement 
 Accuracy  Map  Agreement  is  a  measurement  to  quantify  the  alignment  of  positional 
 dependency  in  visual  behaviour  between  humans  and  All-TNNs/CNNs.  We  computed  the 
 Pearson  correlation  coefficient  between  the  corresponding  maps  for  humans  and 
 All-TNNs/CNNs  for  each  of  our  16  object  categories.  The  mean  noise-ceiling  corrected  (see 
 below)  correlation  score  is  calculated  across  these  16  categorical  accuracy  maps  using  a 
 permutation test. 
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 Accuracy Dissimilarity Matrix Agreement 
 We  use  Accuracy  Dissimilarity  Matrices  (ADM)  to  quantify  the  dissimilarity  between  pairs  of 
 accuracy  maps  of  different  categories,  in  a  similar  spirit  to  the  well-known  Representational 
 Dissimilarity  Matrices  (RDMs)  45  ,  which  compare  the  dissimilarity  between  representations  of 
 pairs  of  stimuli  pairs  of  stimuli.  Objects  yielding  behaviourally  distinct  accuracy  maps  have 
 high  dissimilarity  in  our  ADM,  and  vice-versa.  ADMs  were  created  using  Pearson  correlation 
 distance  between  each  category  accuracy  map.  To  quantify  the  agreement  between  model 
 and  human  ADMs  we  use  noise-ceiling  corrected  (see  below)  Spearman  correlation 
 between  ADMs  participants  (n=30),  and  All-TNNs  (n=10)  or  CNNs  (n=10)  using  permutation 
 tests.  A  higher  correlation  indicates  a  higher  alignment  of  the  structure  of  class-wise 
 positional dependencies. 

 Noise Ceiling Analysis 
 Behaviour  is  noisy,  and  therefore,  even  humans  do  not  correlate  perfectly  with  each  other. 
 Therefore,  we  cannot  expect  models  to  have  a  perfect  correlation  with  our  participants  either. 
 To  account  for  this,  we  compute  a  noise-ceiling  by  iteratively  leaving  out  one  human  and 
 seeing  how  well  it  correlates  with  the  other  29.  This  yields  30  correlations,  of  which  we  take 
 the  mean  (this  is  technically  referred  to  as  the  noise  ceiling  lower  bound).  We  then  divide  our 
 model-human correlations by this value. 

 Stereotypical unit activation patterns and link to behaviour 
 To  ask  whether  the  drop  in  performance  at  different  locations  of  the  5x5  accuracy  map  can 
 be  explained  by  the  fact  that  All-TNNs  fail  to  engage  the  adequate  unit  population,  we 
 extracted  activation  maps  from  the  last  layer  of  All-TNNs  and  CNN  control  models  in 
 response  to  both  ecoset  test  set  images  for  our  16  classes,  and  stimuli  from  COCO 
 displayed  on  the  5x5  experimental  grid.  We  consider  the  responses  to  ecoset  test  images 
 “stereotypical”,  and  quantify  the  engagement  of  these  stereotypical  unit  activation  patterns 
 for  each  class  and  location  in  the  experimental  5x5  grid.  In  detail,  for  each  of  our  16  classes, 
 we  compute  the  cosine  similarity  between  the  “stereotypical”  activation  map  and  the 
 “experimental”  activation  map  elicited  by  presenting  our  experimental  stimuli  at  each 
 location.  We  then  relate  this  stereotypical  engagement  to  classification  accuracy  by  using  a 
 linear regression with bootstrapping. 

 Code and data availability 

 All analyses of human and model data were performed in custom Python software, making 
 use of Numpy and/or scikit-learn packages. The code and data required to reproduce our 
 results will be released upon journal publication of this paper. 
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 Supplementary Material 

 Figure  S1  |  Orientation  selectivity  maps  across  training  epochs  and  model  instances. 
 a.  The  V1-like  organisation  of  orientation  selectivities  in  the  first  layer  of  All-TNN  remains 
 stable  after  emergence  in  the  first  training  epochs.  b  .  The  organisation  of  orientation 
 selectivities  for  All-TNNs  is  consistent  across  all  trained  network  seeds.  c.  Unstructured 
 salt-and-pepper  orientation  selectivity  maps  emerge  in  all  trained  CNN  seeds.  d  . 
 Salt-and-pepper orientation selectivity maps emerge in all trained LCN seeds. 
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 Figure  S2  |  Entropy  analysis  across  model  instances.  a.  The  cortical  magnification  of 
 entropy  maps  in  the  first  layer  of  All-TNN  emerges  consistently  across  network  seeds.  b  . 
 Homogenous  unstructured  entropy  maps  emerge  in  all  trained  CNN  seeds.  c  . 
 Homogenousentropy maps emerge in all trained LCN seeds. 
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 Figure  S3  |  Category  selectivity  maps  across  training  epochs  and  model  instances.  a. 
 The  clustering  of  high-level  category-based  selectivities  (d’)  for  tools,  scenes,  and  faces  in 
 the  last  layer  of  All-TNN  emerges  through  training  epochs.  b  .  The  emergence  of  clusters  of 
 category  selectivity  for  All-TNNs  is  consistent  across  all  trained  network  seeds.  c.  Category 
 selectivity  maps  are  unstructured  in  all  trained  CNN  seeds  d  .  Category  selectivity  maps  are 
 unstructured in all trained LCN seeds. 
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 Figure  S4  |  Categorical  spatial  prior  and  accuracy  maps  a.  Spatial  occurrence  frequency 
 maps  for  different  object  categories  in  high  resolution,  derived  from  the  COCO  dataset,  are 
 downsampled  to  5x5  resolution  to  match  the  resolution  of  accuracy  map  results  from 
 behaviour  experiments.  b.  Visualisation  of  accuracy  maps  for  all  16  categories  for  average 
 humans, All-TNNs and CNNs. 
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 Figure  S5  |  Positional  uncertainty.  The  calculation  of  categorical  positional  uncertainty  is 
 based  on  the  area  size  of  the  locations  with  the  occurrence  frequency  larger  than  threshold 
 (90%  of  highest  frequency)  on  the  categorical  positional  occurrence  maps.  The  size  of  the 
 region  with  a  high  frequency  of  occurrence  represents  the  magnitude  of  the  categorical 
 position uncertainty. 
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