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Abstract

In real-life situations, the appearance of a person’s face can vary substantially across different encounters, making face

recognition a challenging task for the visual system. Recent fMRI decoding studies have suggested that face recognition is
supported by identity representations located in regions of the occipitotemporal cortex. Here, we used EEG to elucidate the
temporal emergence of these representations. Human participants viewed a set of highly variable face images of 4 highly
familiar celebrities (2 males and 2 females), while performing an orthogonal task. Univariate analyses of event-related EEG
responses revealed a pronounced differentiation between male and female faces, but not between identities of the same
sex. Using multivariate representational similarity analysis, we observed a gradual emergence of face identity
representations, with an increasing degree of invariance. Face identity information emerged rapidly, starting shortly after

100 ms from stimulus onset, but was modulated by sex differences and image similarities. From 400 ms after onset and
predominantly in the right hemisphere, identity representations showed 2 invariance properties: 1) they equally
discriminated identities of opposite sexes and of the same sex, and 2) they were tolerant to image-based variations. These
invariant representations may be a crucial prerequisite for successful face recognition in everyday situations, where the

appearance of a familiar person can vary drastically.
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Introduction

Efficient face recognition is a key ability in human'’s everyday
lives, and many studies have investigated its underlying neural
mechanisms (Gobbini and Haxby 2007; Duchaine and Yovel
2015). Recently, much progress has been made in spatially pin-
pointing the neural correlates of face recognition by advances
in multivariate classification techniques for fMRI data
(Anzellotti and Caramazza 2014; Guntupalli et al. 2017). These
techniques have allowed researchers to decode face identity
from different regions of the face processing network, such as
from the fusiform face area (FFA) (Gilaie-Dotan and Malach
2007; Nestor et al. 2011; Goesaert and Op de Beeck 2013;

Verosky et al. 2013; Anzellotti et al. 2014; Axelrod and Yovel
2015; Weibert et al. 2016), the anterior temporal lobe (ATL)
(Kriegeskorte et al. 2007; Nasr and Tootell 2012; Anzellotti et al.
2014) or from a larger network extending from early visual
areas towards the inferior frontal gyrus (Guntupalli et al. 2017,
Visconti Di Oleggio Castello et al. 2017).

The temporal emergence of face identity representations,
however, remains relatively unexplored. Most of our knowledge
on the temporal dynamics of face recognition stems from EEG
and magnetoencephalography (MEG) studies employing tradi-
tional, univariate analyses on temporally confined ERP/MEP
components. Across these studies, the components associated
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Figure 1. Design and analysis approach. (A) Trial structure and stimulus examples. Stimuli were color, “ambient”, face-cropped images of 4 highly recognized celebri-
ties (Angelina Jolie (A]), Heidi Klum (HK), Leonardo DiCaprio (LD), Til Schweiger (TS)) (Image credits: File:Angelina Jolie at Davos crop.jpg. (2014, April 23). Wikimedia
Commons, the free media repository. Retrieved 15:17, 1 May 2018 from https://commons.wikimedia.org/w/index.php?title=File:Angelina_Jolie_at_Davos_crop.jpg&oldid=
122076 100. Creative Commons Attribution-Share Alike 3.0 Unported license. File:LeonardoDiCaprioNov08.jpg. (2018, January 20). Wikimedia Commons, the free media
repository. Retrieved 15:18, 1 May 2018 from https://commons.wikimedia.org/w/index.php?title=File:LeonardoDiCaprioNov08.jpg&oldid=281183 411. Creative Commons
Attribution-Share Alike 3.0 Unported license. Heidi Klum: File:Project Runway (8287126501).jpg. (2017, December 8). Wikimedia Commons, the free media repository.
Retrieved 15:54, January 30, 2019 from https:/commons.wikimedia.org/w/index.php?title=File:Project_Runway_(8287126501).jpg&oldid=271028135. Creative Commons
Attribution 2.0 Generic license. These images were not part of the original stimulus set). Each trial started with a fixation cross (250 ms), followed by the stimulus image
(600 ms) and a blank screen (1300 ms). Target trials containing a tilted stimulus (illustrated on the bottom) were included to ensure that participants maintained attention.
(B) The logic of the multivariate pattern analysis. Top: A representative ERP recording from one participant. EEGs were segmented between —200 and 1300 ms relative to
stimulus onset. Bottom: For each time point separately, linear classification analyses were performed for each combination of individual images, using a leave-one-trial-out
scheme. This procedure resulted in a 40 x 40 matrix (i.e., 10 images for each of the 4 identities) of decoding accuracies at each time point. (C) Representational dissimilarity
matrices (RDMs) from a single representative participant showing pairwise decoding accuracies at —200, 250, and 1300 ms relative to stimulus onset. The color bar presents
decoding accuracy relative to chance level (50%).

with face recognition vary substantially: several reports have
linked face recognition to the P100 and N170 components
(Debruille et al. 1998; Heisz et al. 2006; Caharel et al. 2009;
Rousselet et al. 2009; Liu et al. 2013), others have stressed the
role of the later N250 and N400 components (Bentin and
Deouell 2000; Schweinberger et al. 2002; Huddy et al. 2003;
Tanaka et al. 2006; Curran and Hancock 2007; Gosling and
Eimer 2011; Jin et al. 2012).

So far only 3 studies have used multivariate pattern analysis
(MVPA) to evaluate the temporal dynamics of face identity pro-
cessing (Vida et al. 2017; Nemrodov et al. 2016, 2018). All 3
investigated the temporal emergence of identity representa-
tions across changes in emotional expression, revealing that
identity representations emerge relatively early within the first
200 ms after stimulus onset.

However, these previous studies suffer from 2 critical short-
comings. First, they used unfamiliar faces, whose processing is
assumed to be markedly different from the processing of famil-
iar faces, as reflected both in behavioral performance (for a
review, see Johnston and Edmonds 2009) and neural activations
(Natu and O’Toole 2011). Second, variability across images of

the same identity was very limited, leaving it unclear how their
results generalize to everyday face recognition where individ-
ual encounters with highly variable, “ambient” face images give
rise to drastic visual differences (Burton 2013; Young and
Burton 2017; Kramer et al. 2018).

In the current EEG study, we provide a temporal characteri-
zation of face identity processing, which eliminates both short-
comings: First, we used images of 4 celebrities, who were
highly familiar to the participants (Fig. 1A). Second, for each
identity, we used 10 “ambient” images (Jenkins et al. 2011),
which varied substantially in a range of properties, such as
viewpoint, lighting, and expression.

Using  representational  similarity  analysis  (RSA)
(Kriegeskorte and Kievit 2013), we show that the earliest repre-
sentations of facial identity emerge shortly after 100 ms post-
stimulus and most robustly in posterior electrodes. Later
representations, emerging from 400 ms onwards and in electro-
des over right occipitotemporal cortex, contained identity infor-
mation for faces of the same sex and were invariant to image-
based properties. Our results suggest that familiar face recogni-
tion is supported by fine-grained neural representations in the
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face processing network, where identity information over time
becomes increasingly invariant to other visual and conceptual
properties of the face.

Methods
Participants

A total of 26 healthy participants (6 males, 20 right handed),
with an average age of 25 years (SD = 5.0) took part in the study
in exchange for partial course credits or monetary compensa-
tion. The experiment was conducted in accordance with the
guidelines of the Declaration of Helsinki, and with the approval
of the ethics committee of the University of Jena. Written
informed consent was acquired from all participants.

Stimuli

The stimuli were ambient, color photographs of 2 female
(Angelina Jolie, AJ; Heidi Klum, HK) and 2 male (Leonardo
DiCaprio, LD; Til Schweiger, TS) celebrities. We selected these
celebrities based on a pilot survey where we collected familiar-
ity ratings across a range of well-known celebrities in Germany.
For each identity, 10 images were selected from a pool of
web-scraped photographs, pre-screened for quality. Stimulus
images were cropped to a rectangle centered on the inner fea-
tures of the face (Fig. 1A). To ensure substantial variation across
images depicting the same identity, we selected images that
minimized the structural similarity index (SSIM; Wang et al.
2004) among images of the same identity, while maximizing it
among images of identities of the same sex; this was achieved
by using random combination sorting with 100000 iterations
per sex category. The resulting mean SSIM values were: LD:
0.387, TS: 0.378, LD versus TS: 0.355; AJ: 0.379, HK: 0.371, AJ ver-
sus HK: 0.337. Stimuli were presented centrally on a uniform
gray background on a TFT display (1680 x 1050 pixel resolution,
refresh rate 60Hz). The experiment was written in Psychopy
(Peirce 2008).

Experimental Procedure

A total of 1760 trials (1600 nontarget and 160 target) were pre-
sented in 40 runs, each containing the 10 images of the 4 iden-
tities once, in a pseudorandom order (with the constraint that
the same identity was never repeated in 2 consecutive trials).
Thus, photos of one identity were seen 400 times, so that a
given image of a given identity was presented 40 times during
the experiment. Each trial started with a fixation cross (250 ms),
followed by the stimulus image (600 ms, subtending a visual
angle of 4.4° in diameter) and finally a blank display (1300 ms).
Short breaks were provided after every 10 runs, but the run
boundaries were not indicated otherwise. There were 4 target-
trials in each run, where the image was rotated 10° clockwise
or anticlockwise. Participants were instructed to press the
space bar when they saw a target image (the overall detection
accuracy was at 99.52 + 0.67%). These target trials served to
ensure that the participants maintained their attention, and
were not included in the analysis. An average experimental
session lasted 81.5 (+5.3) min.

At the beginning of each experiment, prior to mounting the
electrode caps, participants were presented images of the 4
identities and were asked to name them. All our participants
were able to name all 4 celebrities correctly. The images of this
initial familiarity-testing phase were not part of the later EEG
experiment. After the EEG recording, participants were asked to
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rate their familiarity with the identities on a 7-point scale.
Mean ratings were generally high (AJ: 6.12, HK: 6.30, LD: 6.15,
TS: 6.11) and not statistically different for the 4 identities (F
[3,75] = 0.243, P = 0.866).

EEG Recording and Preprocessing

The EEG was recorded in a dimly lit, electrically shielded, and
sound-attenuated chamber. The distance between the eyes
and the computer screen was set to 96 cm via a chin rest. The
electroencephalogram (EEG) was recorded with a 512Hz sam-
pling rate (bandwidth: DC to 120Hz) using a 64-channel
Biosemi Active II system. Electrooculogram (EOG) was recorded
from the outer canthi of the eyes and from above and below
the left eye.

The preprocessing pipeline was implemented in MNE-
python (Gramfort et al. 2013, 2014). EEG was notch-filtered at
S0Hz, band-pass filtered between 0.1 and 70Hz, segmented
from —200 to 1300 ms relative to stimulus onset, and baseline
corrected with respect to the first 200 ms. Artifact rejection was
carried out using the “Autoreject” algorithm (Jas et al. 2017).
The resulting data was downsampled to 100Hz to increase
signal-to-noise ratio in the multivariate analyses (Grootswagers
et al. 2017).

Event-Related Potentials

To test for the presence of identity-related information within
the conventional ERPs we averaged data across repetitions for
each facial identity, electrode and participant separately. Next,
we created grand-averages of these data across 6 regions of
interests, corresponding to the left and right anterior (Fp, AF, F,
FC), central (FT, TP, C, CP, T) and posterior occipito-temporal
electrodes (PO, P, O, I). The central electrodes (Fpz, AFz, Fz, FCz,
Cz, CPz, Pz, POz, Oz, 1z) were included in both the left and the
right clusters; this was done to maintain sufficient electrode
counts for the multivariate analyses (see below). For reasons of
consistency, the same electrode clusters were used in both
analyses. The posterior clusters included the electrodes typi-
cally yielding the largest face-sensitive N170 components
(Rossion and Jacques 2008). First, we tested for identity selectiv-
ity by using a one-way repeated measures ANOVA with identity
(4) as a factor. Second, we averaged the 2 females and 2 males
face elicited ERPs and performed a paired t-test for testing sex-
specific differences. Third, we tested if the ERPs differed for the
2 identities within the same sex by comparing the ERPs for the
2 female as well as for the 2 male identities with each other in
t-tests.

Representational Similarity Analysis

To model the neural organization of face representations, we
performed a RSA (Kriegeskorte 2008) on the EEG data. In this
analysis (Fig. 1B,C), the neural dissimilarity between all pairs of
face images (i.e., between all 40 individual images), was mod-
eled as a function of different predictor matrices (see below).
Neural dissimilarity: Neural dissimilarity was extracted by
performing a linear classification analysis, where pairwise
decoding accuracies were used as a measure of representa-
tional dissimilarity. Classification analysis was carried out
using the CoSMoMVPA toolbox (Oosterhof et al. 2016). Linear-
discriminant-analysis (LDA) classifiers were trained and tested
on response patterns across all 64 electrodes, separately for
each time point across the epoch (downsampled to 100 Hz, i.e.,
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Figure. 2. RSA results. To reveal identity-specific representations, we modeled the representational organization obtained from EEG signals with different predictor
matrices (A, C, E). We observed temporally persisting identity information starting from 110 ms after stimulus onset (A, B). Similarly, we found strong sex information
in the neural organization, emerging between 140 and 680 ms (C, D). Tracking identity information for faces of same and opposite sexes revealed that identity infor-
mation for same-sex faces was relatively delayed, emerging only after 400 ms (E, F). Early identity information was significantly reduced for between-sex comparisons
(black significance markers), suggesting that early identity coding partly relies on differences in face sex. Horizontal lines denote statistical significance (P < 0.05, cor-

rected for multiple comparisons). Shaded ranges denote standard errors of the mean.

with a 10 ms resolution) and separately for each pair of images.
Training and testing was done in a leave-one-out scheme
(Fig. 1B): classifiers were trained on all but one trials for each of
the 2 conditions, and tested on the left-out trials. This proce-
dure was repeated until each trial was left out once, and classi-
fication accuracy was averaged across these repetitions.
Pairwise classification time-courses were smoothed with a
30ms (i.e., 1 consecutive time points) averaging window (Kaiser
et al. 2016). This classification analysis led to one representa-
tional dissimilarity matrix (RDM; 40 x 40 entries, with empty
diagonal) for each time point (Fig. 1C).

Modeling neural dissimilarity: To model the neural dissimilar-
ity, we created 4 categorical predictor RDMs. Each predictor
RDM covered 40 x 40 elements, and contained zeros where the
entries represented comparisons of similar images (i.e., similar
on the dimension of interest, see below) and ones, where the
entries reflected comparisons of dissimilar images. To quantify
correspondence between the predictor RDMs and the neural
RDMs, we unfolded the lower off-diagonal elements of the
matrices into 2 vectors (i.e., the diagonal of both matrices was
discarded) and correlated the vectors using Spearman’s correla-
tion coefficients. These correlations were computed separately
for each time point, leading to a time series of correlations that
reflected the correspondence of the neural data and the predic-
tor.  Individual-participant  correlations  were  Fisher-
transformed.

Modeling identity Information: For assessing differences
between the 4 identities, all comparisons within a given

identity (e.g., 2 images of AJ) were marked as similar (0) and all
comparisons between 2 identities (e.g., an image of AJ and an
image of TS) were marked as dissimilar (1) (Fig. 2A).

Modeling sex information: For assessing differences between
face sexes, all comparisons within the same sex (e.g., an image
of AJ and an image of HK) were marked as similar (0), and all
comparisons between the different sexes (e.g., an image of AJ
and an image of TS) were marked as dissimilar (1). To avoid
confounding sex information with identity information, all
comparisons within the same identity (e.g., 2 different images
of AJ) were excluded from this analysis (as including these
comparisons would overestimate the effect of sex) (Fig. 2C).

Modeling identity information between and within sexes: To
uncover interactions between sex and identity processing, we
constructed identity predictor RDMs that only covered all com-
parisons across the sexes or within one sex. The between-sex
RDM was generated from the identity predictor matrix by
removing all comparisons of 2 different identities of the same
sex (e.g., an image of A] and an image of HK), leaving only com-
parisons within identity (0) and between identities of the oppo-
site sex (1). The within-sex RDM was generated from the
identity predictor matrix by removing all comparisons of 2
identities of different sexes (e.g., an image of AJ and an image
of TS), leaving only comparisons within identity (0) and
between identities of the same sex (1) (Fig. 2E). Note that this
within-sex analysis tests for identity representations in more
thorough way: by removing between-sex comparisons, the
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more pronounced differences between faces of the opposite sex
(due to face sex, and due to visual differences) are eliminated.

Sensor-space RSA: To track representational organization
across electrode space, we additionally repeated the RSA across
the 6 electrode clusters also used in the ERP analysis (see
above). Including central electrodes (Fpz, AFz, Fz; FCz, Cz, CPz;
Pz, POz, Oz, Iz) in both left- and right-hemispheric clusters
yielded electrode counts of 12, 12, and 13, for the anterior, cen-
tral, and posterior clusters, respectively. All technical details of
the cluster-specific RSAs were identical to the analysis using all
available electrodes.

Controlling for image similarity: To quantify similarity on the
image level, we computed pixel similarities for all pairs of
images. Each image (220 x 220 pixels in 3 color layers) was first
unfolded into a vector; these vectors were then correlated for
each pair of images. A pixel RDM was generated by using 1 -
correlation as the dissimilarity measure. As the pixel RDM
explained some variance in the face identity RDM (R?=0.06),
neural identity representations could in principle partly reflect
pixel similarities. Hence, we used a partial correlation approach
(Cichy et al. 2017; Groen et al. 2018), where we repeated the key
analyses while removing the pixel RDM by partialing it out.
This analysis revealed representations of face identity that are
invariant to pixel-based image similarities.

Statistical Testing

To identify significant effects across time, we used a threshold-
free cluster enhancement procedure (Smith and Nichols 2009)
with default parameters. Multiple-comparison correction
across time was based on a sign-permutation test (with null
distributions created from 10000 bootstrapping iterations) as
implemented in CoOSMoMVPA (Oosterhof et al. 2016). The result-
ing statistical maps were thresholded at Z > 1.64 (i.e., P < 0.05,
one sided against zero). For peaks across the time courses, we
additionally report uncorrected t-values and Cohen’s d as a
measure of effect size.

Results

Event-Related Potentials Reflect Face Sex, But not Face
Identity

Following traditional EEG studies on face perception, we first
performed a univariate ERP analysis across 6 electrode clusters
(Supplementary Fig. S1). ERPs were different for the 4 identities
primarily in the bilateral posterior electrode clusters (main
effect of identity in a 4-way ANOVA, Supplementary Fig. S1E/F,
purple line) starting from 100 ms for the left and 120 ms for the
right hemisphere (Supplementary Fig. S1), remaining signifi-
cant throughout the length of the epoch. The other electrode
clusters showed weaker and less temporally persistent differ-
ences (A-D). The difference between identities however origi-
nated from the significantly different ERPs for female and male
faces from 190ms (left) and 150ms (right), throughout the
length of the epoch. By contrast, within-sex comparisons led to
no significant results at any of the time-points over any of the
electrode clusters. These results support prior studies showing
that ERP signals more prominently reflect face sex than face
identity (Mouchetant-Rostaing et al. 2000; Freeman et al. 2010).
In the following we applied MVPA to further probe the emer-
gence of identity information with higher sensitivity.

Neural Dynamics of Face Recognition Ambrusetal. | 5

Tracking the Emergence of Face Identity
Representations

To reveal identity information in the EEG signals, we generated
an identity predictor RDM, which reflected the 40 images’ dis-
similarity in identity (Fig. 2A). We then correlated the neural
RDM with this identity RDM separately at every time point.
This analysis revealed significant correlations from 110ms
onwards, peaking at around 410 ms (peak t[25] = 5.97 Cohen’s
d = 1.17) and lasting across the whole epoch (Fig. 2B), suggest-
ing rapidly emerging and long-lasting face identity information
in the signal. Converging results were obtained using classifica-
tion analysis (see Supplementary Fig. S2).

Our stimulus set contained faces of both sexes, and faces
within the same sex share more visual and conceptual proper-
ties than faces of opposite sexes (O’'Toole et al. 1998). To deter-
mine whether such sex differences could be retrieved from the
EEG signals, we correlated the neural RDM with a sex predictor
RDM separately at every time point (Fig. 2C). This sex predictor
RDM only contained between-identity comparisons, so that
this analysis reflected face sex independently of identity. We
found significant sex information from 140 to 680 ms, peaking
at 270 ms (peak t[25] = 4.39 Cohen’s d = 0.86) (Fig. 2D). This indi-
cates that the early EEG signals also contain reliable differences
between sexes, emerging at a similar time point as identity-
specific information but decaying more rapidly.

The presence of sex information in the signal suggests that
identity information may be processed differently as a function
of the sex of the face. Specifically, as faces of the same sex are
more similar in various aspects (including their visual appear-
ance), discriminating between the 4 facial identities may over-
estimate the amount of genuine identity information in the
signal. We thus split our analysis into comparisons between
faces of opposite and of the same sex by correlating the neural
RDMs with 2 separate predictor RDMs (Fig. 2E).

For one of these predictor RDMs (“between-sex”) we only
included comparisons between the 2 sexes, while for the other
RDM (“within-sex”) we only included comparisons within the
same sex. As predicted by the significant contribution of sex
information (Fig. 2D), we found that identity information is dif-
ferently pronounced between and within the 2 sexes. We
observed strong sex-dependent identity information that could
be retrieved from as early as 100 ms until the end of the epoch
and peaking at 260ms (peak t[25] = 7.40 Cohen’s d = 1.45).
Identity information, however, differed when restricting the
analysis to within-sex comparisons: it emerged significantly
later, at around 400ms, and peaked at 1050ms (peak t[25] =
5.97 Cohen’s d = 1.17) (Fig. 2F). When directly comparing iden-
tity information for the between- and within-sex comparisons,
we found significantly higher identity information for the
between-sex analysis between 140 and 660 ms. This suggests
that early identity representations partly reflect differences in
face sex. By contrast, after 660 ms, face sex did not influence
identity representations, suggesting the emergence of identity
representations that are invariant to commonalities and differ-
ences across the 2 sexes.

Face Identity Information Predominantly Originates
From Right Posterior Sources

As highlighted by previous neuroimaging studies (Rossion et al.
2003, 2012) (for a recent review see Yovel 2016), and evident
from our wunivariate results (see above), face-selective
responses are strongest over right posterior electrodes. Using
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Figure 3. Sensor-space RSA results. When repeating the RSA for the 6 electrode clusters used in the ERP analysis, we found strongest identity information in the pos-
terior clusters (E/F). This identity information was lateralized to the right hemisphere: In the right central and posterior electrode clusters (D/F), we observed signifi-
cant within-sex identity information, with an early onset (110ms) in the right posterior cluster. The corresponding left-hemispheric clusters (C/E) only yielded
identity information when also the between-sex comparisons were included. The anterior clusters (A/B) did not yield substantial identity information. Horizontal
lines denote statistical significance (P < 0.05, corrected for multiple comparisons). Shaded ranges denote standard errors of the mean.

response patterns across the whole scalp may therefore partly
obscure face identity information in the multivariate analyses.
We thus repeated the RSA separately for each of the 6 electrode
clusters used in the univariate analysis, expecting the strongest
identity information in the right posterior cluster (Fig. 3).

For the posterior electrode clusters we found the most pro-
nounced identity information, and a marked difference
between hemispheres. In the left posterior cluster, 4-way iden-
tity information (where sex may contribute to identity

encoding) emerged from 120 ms poststimulus onset and peaked
at 560 ms (peak t[25] = 4.85 Cohen’s d = 0.95) (Fig. 3). However,
restricting the analysis to within-sex comparisons abolished
identity information over this electrode cluster in the signal
entirely. Similarly, in the right posterior cluster (Fig. 3F) we
found robust 4-way identity information, starting from 110 ms
after stimulus onset and peaking at 230ms (peak t[25] = 4.81
Cohen’s d = 0.94). Crucially however, the right posterior cluster
also showed reliable within-sex identity information
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Figure 4. Controlling for image similarity. In a partial correlation analysis, we tracked within-sex identity information while controlling for the images’ pixel dissimi-
larities (A). When using data from all electrodes, removing pixel dissimilarities did not significantly impact identity information (B). For the right posterior cluster,
where early within-sex identity information was found in previous analysis (Fig. 3F), controlling for pixel dissimilarity had a significant impact (C): early identity infor-
mation (90-230 ms) was significantly reduced when controlling for pixel dissimilarity, whereas later identity information was not impacted and remained significant
from 460 ms after onset. These results suggest that later representations of face identity are invariant to image-based properties. Horizontal lines denote statistical
significance (P < 0.05, corrected for multiple comparisons). Shaded ranges denote standard errors.

throughout the epoch, emerging at the same time, after 110 ms
and peaking around 530 ms (peak t[25] = 5.40 Cohen’s d = 1.06).
This result suggests that signals recorded from electrodes close
to the typically face-selective ERP recording sites of the right
hemisphere contain widespread identity information, even
when visual and conceptual properties are more robustly con-
trolled for.

The left central cluster (Fig. 3C) primarily showed 4-way
identity information, emerging slightly later as compared with
the posterior cluster, after 200 ms, peaking at 560 m s (peak t[25]
= 5.10 Cohen’s d = 1.0). By contrast, the right central cluster not
only yielded 4-way identity information (from 150 ms, peaking
at 480 ms, peak t[25] = 4.97, Cohen’s d = 0.97), but also within-
sex identity information, emerging later than that of the poste-
rior cluster, after 550 ms and peaking at 1100 ms (peak t[25] =
3.11, Cohen’s d = 0.61).

Signals recorded from the 2 anterior clusters did not yield
substantial identity information (Fig. 3A,B), suggesting that
identity information primarily originates from sources in visual
cortex.

Late Representations of Face Identity are Invariant to
Image Properties

Our stimulus set was constructed to mirror natural variations
across different encounters with a familiar person. This was
achieved by selecting stimuli that ensured a high degree of var-
iability within each identity (see above), so that image-based
stimulus properties are unlikely to account for the emergence
of identity information. To explicitly rule out this possibility,
we performed a control analysis, where we additionally mod-
eled image-based similarities between stimuli. This was done
by constructing pixel RDMs, which reflected the images’ dis-
similarity in pixel values; these pixel RDMs were partialled out
in the subsequent analysis. We focused the control analysis on
the within-sex comparison, which forms the most robust test
of face identity representations, and on the 2 electrode

configurations where it was most robustly found (all electrodes
and right posterior electrodes).

In the analysis using all electrodes, we found no modulation
of identity information after removing the pixel RDM (Fig. 4B).
Similarly, sex information was not modulated when controlling
for pixel similarity. By contrast, when focusing on the right pos-
terior cluster, we found a modulation of identity information
when controlling for image-based similarity (Fig. 4C). Early
within-sex identity information, emerging between 90 and
230 ms was significantly reduced when controlling for pixel dis-
similarity. By contrast, later within-sex identity information
(from 460 ms) emerged independently of image-based proper-
ties. Together, these results suggest that later representations
of face identity are robust to image-based changes, and genu-
inely reflect face identity. These neural representations might
thus be a crucial prerequisite for efficient face recognition
across visually different encounters with a person.

Discussion

In the current study, we applied representational similarity
analysis to EEG signals to investigate the neural dynamics of
familiar face recognition. Our results show that face identity
can be rapidly recovered from EEG response patterns, even
with highly variable, “ambient” face stimuli (Jenkins et al.
2011). In more fine-grained analyses, we uncovered a gradual
emergence of face identity coding: Early identity information is
modulated by face sex and by visual image properties. By con-
trast, later identity information, emerging after 400 ms and pri-
marily in the right hemisphere, is unaffected by these factors.
This finding suggests that after 400 ms representations genu-
inely reflect face identity. These later representations may be
the basis for real-world face recognition, allowing the identifi-
cation of an individual across different encounters and against
similar-looking other faces.

In everyday life, the facial appearance of a single person can
be highly variable. This variability makes it challenging to
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match an individual encounter with a face to an identity repre-
sentation stored in memory (Bruce et al. 1999; Clutterbuck and
Johnston 2002; Jenkins et al. 2011; Andrews et al. 2015). The
invariant identity representations revealed here are ideal for
extracting face identity from different encounters, as they dis-
criminate identities of the same sex, across variations in visual
properties. The late emergence and prolonged nature (from 400
up to 1300 ms poststimulus onset) of such representations is
compatible 1) with the persistent nature of stimulus-selective
neural activity in macaque inferior temporal and entorhinal
cortices (Fuster and Jervey 1981; Miyashita and Chang 1988,
Suzuki et al. 1997; Yakovlev et al. 1998) and in the human
medial temporal lobe (Kornblith et al. 2017), 2) with the involve-
ment of mnemonic conceptual identity representations in the
medial and anterior temporal cortices (Quiroga et al. 2005;
Mormann et al. 2008), and 3) with recent ERP data showing the
most prominent differences between highly familiar and unfa-
miliar faces between 400 and 600ms (Wiese et al. 2018).
Whether the late identity information in EEG signals reflects
the representations of complex perceptual features that dis-
criminate identities or whether it truly reflects semantic infor-
mation about different people needs to be tested in future
studies. By linking EEG results with functional neuroimaging
data (Cichy et al. 2014, 2016), future studies could directly test
where these representations originate. Another promising ave-
nue is to investigate these representations for a greater number
of identities (our study was limited to 4 individuals) and under
varying task demands.

How do these seemingly late identity representations sup-
port rapid face recognition in the wild? While these representa-
tions are useful under great variability and in the presence of
distracting face information, face recognition is sometimes eas-
ier than this: In real-life situations, we often know which per-
son to expect, which visual properties are diagnostic of him or
her, and where the person likely shows up. Under such condi-
tions, motor responses in face recognition tasks can be faster
than 400ms (Visconti di Oleggio Castello and Gobbini 2015;
Besson et al. 2017). This observation suggests that face identity
can sometimes be inferred from earlier representations that do
not need to be highly invariant. Future studies could thus test
whether different representational stages are crucial for face
recognition under varying demands.

Our study revealed a pronounced right-hemispheric laterali-
zation of identity information: face identity information was
strongest in electrodes over the right, as opposed to the left,
visual cortex. Specifically, only signals recorded over right occi-
pitotemporal cortex contained identity information which is
invariant to both face sex and image-based properties. This
right-lateralized topography is consistent with sources in the
visual face processing network that has a strong right-
hemispheric lateralization (Axelrod and Yovel 2015; Yovel
2016). Interestingly, neuroimaging work showed that specifi-
cally right-hemispheric activations predict behavioral perfor-
mance in familiar face recognition (Weibert and Andrews 2015),
suggesting that these identity representations could play an
important role in face recognition. However, this notion has to
be explicitly tested in the future, as caution needs to be applied
when inferring cortical sources from EEG scalp topographies.

The timing and topography of the face identity representa-
tions revealed here suggest that they support the recognition of
familiar people, rather than reflecting low-level visual image
discrimination. Face identification can per definition only occur
for familiar people (Hancock et al. 2000), and it is therefore

expected that identity information for previously unfamiliar
people cannot be equally recovered from EEG signals. However,
follow-up studies need to compare familiar and unfamiliar
faces to test this prediction explicitly. We speculate that the
representations described here are sculpted by our rich experi-
ence with the people we know, both on a perceptual level
(where invariant perceptual representations are formed) and
on a semantic level (where person knowledge is acquired).
Testing how stable identity representations emerge over the
course of face learning (Andrews et al. 2015) would therefore be
an exciting topic for future research in this direction.

Besides identity coding, our findings also offer insights into
the cortical coding of face sex. As our stimulus set contained
faces of opposite sexes, we could also track the emergence of
sex information. Face sex can be rapidly retrieved from EEG sig-
nals, both in univariate and multivariate analyses, and predicts
cortical organization from 140ms. This finding corroborates
previous ERP studies, which have suggested that face sex is
extracted early and affects a variety of face-related ERP compo-
nents (Mouchetant-Rostaing et al. 2000; Ito and Urland 2003,
2005; Kloth et al. 2015). As opposed to the temporally sustained
identity information, sex information displayed a more tran-
sient nature, and vanished shortly before 700ms after onset.
This difference between identity and sex information suggests
that the 2 properties are coded somewhat independently at
later processing stages. It is worth noting that high-level repre-
sentations of faces contain a plethora of conceptual informa-
tion about faces: beyond sex and identity, face information can
be organized by emotion, age, attractiveness, and many other
factors. Our study therefore only offers a selective snapshot of
the complex cortical organization of face information, which
needs to be more fully characterized in future studies.

In conclusion, we provide a characterization of the neural
dynamics underlying familiar face recognition. Representations
of face identity emerged gradually across the visual processing
cascade. Invariant identity representations were observed after
400ms of processing. We suggest that these representations
are crucial for face recognition across different encounters with
a person.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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