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Abstract 
 
Our visual environments are composed of an abundance of individual objects. The 
efficiency with which we can parse such rich environments is remarkable. Previous 
work suggests that this efficiency is partly explained by grouping mechanisms, which 
allow the visual system to process the objects that surround us as meaningful groups 
rather than individual entities. Here, we show that the grouping of objects in typically 
and meaningfully structured environments directly relates to a reduction of perceived 
complexity. In an object numerosity discrimination task, we showed participants pairs 
of schematic scene miniatures, in which objects were structured in typical or atypical 
ways, and asked them to judge which scene consisted of more individual objects. We 
obtained two key results: First, participants were less accurate in comparing 
numerosities between typically structured scenes than between atypically structured 
scenes, suggesting that grouping processes hinder the effective individuation of 
separate objects in typically structured scenes. Second, participants underestimated 
the number of objects in typically structured, compared to atypically structured, scenes, 
suggesting that grouping based on typical object configurations reduces the perceived 
numerical complexity of a scene. In a control experiment, we show that this 
overestimation is specific to upright scenes, indicating that is not related to basic visual 
feature differences between typically and atypically structured scenes. Together, our 
results suggest that our visual surroundings appear less complex to the visual system 
than the number of objects in them makes us believe.  
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Introduction 
 
Vision in natural environments is highly efficient: Humans can efficiently find objects 
embedded in rich natural scenes (Li et al., 2002; Peelen & Kastner, 2014; Wolfe et al., 
2011a) and remember large amounts of information from previously viewed scenes 
(Konkle et al., 2010). The efficiency with which humans perform such tasks is often 
described as surprising or puzzling (Peelen & Kastner, 2014; Wolfe et al., 2011a). This 
notion stems from studies with simple visual stimuli that revealed severe capacity 
limitations in processing multiple stimuli: Behavioral performance in such studies drops 
rapidly when more and more items need to be searched (Wolfe, 2010) or remembered 
(Luck & Vogel, 2013). Given the large number of objects contained in natural scenes, 
vision should be highly inefficient in most everyday situations. 
 
Recent studies have provided an explanation based on the typical structure of natural 
scenes (Kaiser et al., 2019; Vo et al., 2019; Wolfe et al., 2011b): In scenes, objects do 
not appear alone and in random locations, but they form meaningful spatial 
arrangements: for instance, lamps appear above tables, and chairs appear next to 
them. To facilitate the processing of multiple simultaneous objects, the visual system 
may exploit the ways in which objects typically appear together in the world. Indeed, 
behavioral studies suggest that typical multi-object configurations facilitate visual tasks 
like detection (Riddoch et al., 2003; Stein et al., 2015), search (Goupil et al., 2023; 
Kaiser et al., 2014), or short-term memory (Kaiser et al., 2015; Liu et al., 2022; 
O’Donnell et al., 2018). Such effects have been explained by a grouping of objects into 
larger units of processing, allowing the brain to process objects at the level of (fewer) 
groups rather than at the level of (more) individual objects (Kaiser et al., 2019; Kaiser 
& Peelen, 2018).  
 
If observers indeed process the environment on the level of meaningful object groups, 
rather than at the level of individual objects, this raises the question of how complex 
the visual world really is to the visual system. The notion of rich visual environments is 
partly derived from estimating the number of individual objects that make up a scene, 
where the abundance of individual objects indexes a scene’s richness (Neider & 
Zelinsky, 2008; Wolfe et al., 2011a). Such measures may indeed overestimate the 
complexity of natural scenes, as they do not take grouping processes into account 
(Neider & Zelinsky, 2008). Here, we sought to investigate whether typically structured 
environments, which enable participants to effectively group objects, are perceived as 
less complex than environments where typical object configurations are disrupted, 
hindering the grouping of objects into meaningful ensembles.  
 
To quantify perceived complexity, we employed a numerosity discrimination paradigm. 
Humans are relatively accurate in estimating numerosity, even for larger quantities 
(Anobile et al., 2015; Feigenson et al., 2004; Kaufman et al., 1949). Recent studies 
show that this accuracy is preserved when objects are embedded in natural scenes 
(Odic & Oppenheimer, 2023; Wencheng et al., 2023). Here, we used numerosity as a 
proxy for visual complexity: The more objects a scene is judged to contain, the more 
complex it appears. This notion corresponds with judgments of scene complexity, 
which are most strongly driven by the number of objects or the overall clutter in a scene 
(Oliva et al., 2004).  
 
In our study, participants judged which of two schematic miniature scenes had the 
greater number of objects in them. Critically, we presented participants with scenes in 



which the objects were presented in accordance with typical real-world structure and 
scenes where real-world structure was violated by shuffling object locations across the 
scene (Fig. 1). With this paradigm, we tested two critical hypotheses. First, we 
hypothesized that discriminating object numerosity in typically structured scenes 
should be worse than discriminating numerosity in atypically structured scenes, as 
grouping processes in typically structured scenes hinder the effective individuation of 
items. Second, we hypothesized that object numerosities should be underestimated in 
typically structured, compared to atypically structured, scenes, as grouping processes 
in typically structured scenes lead to an aggregation of individual objects into fewer 
groups and thereby reduce the perceived object count. 
 
Methods 
 
Participants  
 
We conducted two experiments. In Experiment 1, we tested 34 participants. Data from 
one participant was lost due to an error in data saving, leaving a final sample of 33 
participants (9 men, 24 women; mean age 26.9 years, SD=4.2). In Experiment 2, we 
tested 36 participants. One participant in Experiment 2 was excluded because they did 
not perform the task correctly, leaving a final sample of 35 participants (12 men, 23 
women; mean age 26.7 years, SD=4.4). Sample sizes were chosen based on 
convenience sampling, with the goal of n ≥ 34 to achieve a power of 80% for uncovering 
medium sized effects (Cohen’s d=0.5) in a t-test. All participants had normal or 
corrected-to-normal visual acuity. They received a monetary compensation for their 
participation. Each participant provided written informed consent prior to the 
experiments. Procedures were approved by the general ethical committee of the 
Justus Liebig University of Gießen and in accordance with the Declaration of Helsinki.  
 
Stimuli 
 
The stimulus set consisted of schematic scene miniatures from two categories 
(kitchens and living rooms). We constructed a typical and an atypical version for each 
scene. Typically structured versions were constructed by superimposing a set of 
isolated and colored real-world objects on top of a black perspective grid in a way that 
resembles the typical arrangement of the objects in a typical kitchen or living room (Fig. 
1a). Each scene consisted of 10 to 20 individual objects (i.e., 11 different object 
numerosities). For each numerosity, we constructed two exemplars per category, 
yielding a total of 22 unique typically structured scenes per category (44 in total). 
Atypically structured versions were generated by shuffling the objects around in space 
(Fig. 1a). This shuffling was done manually by the authors while approximately 
controlling for the eccentricity and overlap of objects. This yielded a total of 22 unique 
atypically structured scenes per category (44 in total).  
 
Paradigm – Experiment 1 
 
The experiments were coded in Psychtoolbox for Matlab (Brainard, 1997). During each 
experimental trial, participants viewed a pair of scenes, with one scene on each the left 
and right sides of the screen. The scenes were presented for 1.25s. Each scene 
subtended approximately 17×13 degrees visual angle, with scenes presented 
approximately 5 degrees away from the center of the screen. Participants were tasked 
with judging which of the scenes had more objects in them by pressing the “n” or “m” 



keys on the keyboard corresponding to the left and right stimulus respectively (Fig. 1b). 
Responses were recorded during a response prompt appearing after the scene display 
and participants were asked to respond as accurately as possible. Trials were 
separated by a 500ms inter-trial interval. 
 

 
 
Figure 1. Stimuli and Paradigm. a) Stimuli were schematic scene miniatures 
(kitchens and living rooms), consisting of 10 to 20 individual objects. Scenes could be 
typically structured, resembling real-world regularities in object configurations (top 
row), or atypically structured, with object locations shuffled (bottom row). Examples 
show rooms with 10 objects (left column) or 20 objects (right column). b) On each 
experimental trial, participants were asked to judge which of two simultaneously 
presented scenes contained more objects.   
 
Before the experiment, participants were instructed that the notion of an object in the 
context of the experiment refers to all nameable, separable objects contained in the 
scene. The experiment started with a practice block of 5 trials to familiarize people with 
the displays and response keys. These 5 trials featured different scenes than the ones 
used in the subsequent experiment, and they were discarded from all analyses. 
In the subsequent experiment, each trial always featured two images of the same 
category (i.e., two kitchens or two living rooms). The other conditions were fully 
balanced: That is, each numerosity was once paired with each other numerosity, once 
for two typically structured scenes, once for two atypically structured scenes, and twice 
for a typically and an atypically structured scene (once with the typically structured 
scene on the left and once with the typically structured scene on the right). This yielded 
2 (category) × 11 (numerosity left) × 11 (numerosity right) × 4 (typicality combination) 
trials, that is 968 trials in total. On each trial, one exemplar of the two available 
exemplars from each category and at each numerosity was chosen randomly. Trials 
with the same numerosity never showed the exact same scene, but the two different 
exemplars available. Trial order was fully randomized. The experiment lasted 45min 
and was divided into 4 blocks. 
 
Paradigm – Experiment 2 
 
Experiment 2 was identical to Experiment 1, apart from the following changes: First, 
we only included trials that featured a typically and an atypically structured scene. 
Thus, there were no trials where a typical scene was compared to another typical 
scene, or an atypical scene was compared to another atypical scene. Second, we 
additionally included an equal number of trials where the scenes were presented in an 



upside-down orientation (i.e., inverted), to test whether the effects obtained in 
Experiment 1 were indeed due to typicality or rather caused by low-level feature 
differences between the typically and atypically structured scenes (Kaiser et al., 2014; 
Stein et al., 2015). This yielded 2 (category) × 11 (numerosity left) × 11 (numerosity 
right) × 2 (typicality combination) × 2 (orientation) trials, that is 968 trials in total. The 
experiment again lasted 45min, split into 4 blocks. 
 
Data analysis – Experiment 1 
 
Data were analyzed by fitting psychometric functions to the behavioral responses, 
separately for each participant. Specifically, we used the Palamedes Toolbox (Prins & 
Kingdom, 2018) to fit cumulative gaussian functions to individual participants response 
data, using a maximum likelihood criterion. Psychometric functions were fit on two 
separate parts of the data (see below). For all analyses, data from the two scene 
categories were collapsed to yield more data for fitting the psychometric functions. 
 
First, we focused on the trials in which two typically structured or two atypically 
structured scenes were presented. Here, response data were recoded to obtain 
responses as a function of the relative difference between the number of objects in the 
stimulus presented on the right side of the display versus the stimulus on the left side 
of the display (e.g., responses on trials with a scene with 12 objects on the right and a 
scene with 15 objects on the left were coded as the same relative difference as scene 
with 15 objects on the right and a scene with 18 objects on the left). We then plotted 
the data as a function of responses choosing the right-side stimulus as a function of 
the relative difference in numerosity between the left and right stimuli and fitted a 
cumulative gaussian function. This was done separately for the typically and atypically 
structured scenes. We fitted two parameters: the slope (the variance of the Gaussian 
distribution) and the point of subjective equality (PSE) (the mean of the Gaussian 
distribution) for each fit. These parameters were estimated separately for each 
participant. In this analysis, the slope indicates how well participants could discriminate 
between numerosities, while a non-zero PSE indicates a bias for overestimating 
numerosity on one side of the display. 
 
Second, we focused on the trials in which a typically structured scene and an atypically 
structured scene were presented. Here, response data were recoded to obtain 
responses as a function of the relative difference between the number of objects in the 
typically structured and the atypically structured scenes. Responses were similarity fit 
with a cumulative gaussian, yielding a slope and PSE for assessing the direct 
comparison between the typically and atypically structured scenes. In this analysis, the 
slope indicates how well participants could discriminate between numerosities, while a 
non-zero PSE indicates a bias for overestimating numerosity in either the typically or 
atypically structured scenes. 
 
Data analysis – Experiment 2 
 
Experiment 2 only featured trials in which a typically structured scene and an atypically 
structured scene were presented. Response data were thus again recoded to obtain 
responses as a function of the relative difference between the number of objects in the 
typically structured and the atypically structured scenes. Responses were similarity fit 
with a cumulative gaussian, yielding a slope and PSE for assessing the direct 
comparison between the typically and atypically structured scenes. As in the second 



analysis for Experiment 1, a non-zero PSE indicates an overestimation of numerosity 
for the typically or atypically structured scenes. Here, we performed this analysis 
separately for the upright and inverted scenes, allowing us to compare the parameters 
across scene orientations. 
 
Statistical analysis 
 
Slope and PSE parameters were compared against zero and between conditions using 
one- or two-sample t-tests, respectively. All t-tests were two-sided. Cohen’s d is 
provided as a measure of effect size. 
 
Open practices statement 
 
All materials, data, and code are available on the Open Science Framework (OSF.io) 
and can be retrieved from: https://osf.io/hkxur/. 
 
Results 
 
Experiment 1 
 
In Experiment 1, participants judged which of two scenes presented on the right and 
left sides of the screen contained more objects. Scenes on either side of the display 
could either be typically structured or atypically structured (with object positions 
shuffled across space).  
 
First, we analyzed data from trials where participants compared two typically structured 
scenes with each other or two atypically structured scenes with each other. In both 
conditions, participants were able to tell apart the numerosities of the two scenes: 
When fitting a psychometric function (see Methods), all participants produced positive 
slopes (mean slope 0.18, SD=0.06; comparison against zero, t(32)=17.8, p<0.001, 
d=3.1) and there was no overall bias towards overestimating numerosities on either 
side of the display (mean PSE 0.19, SD=1.6; comparison against zero, t(32)=0.7, 
p=0.51, d=0.12). Critically, we hypothesized that the grouping of individual objects into 
meaningful arrangements leads to a less accurate individuation of objects and thus 
diminished sensitivity for trials featuring typically structured, compared to atypically 
structured, scenes. This hypothesis was confirmed by a significantly shallower slope 
of the psychometric function for trials featuring typical scenes than trials featuring 
atypically structured scenes, t(32)=4.9, p<0.001, d=0.86 (Figure 2a-c). PSEs did not 
differ between conditions, t(32)=1.1, p=0.29, d=0.19. 
 
Second, we analyzed data from trials where participants compared a typically 
structured scene to an atypically structured scene, independently of whether the 
typically structured scene appeared on the right or left side of the screen. Here, we 
hypothesized that participants would underestimate the numerosity of typically 
structured scenes compared to atypically structured scenes, as a grouping of individual 
objects would hinder object individuation in the typically structured scenes. This 
hypothesis was confirmed by a significantly shifted PSE in the psychometric function, 
t(32)=4.6, p<0.001, d=0.82 (comparison of the PSE against zero; Figure 2d-f). With an 
average PSE of 0.91, almost a full object more was needed in the typically structured 
scene to be judged as containing as many objects as the atypically structured scene. 
 



 
 
Figure 2. Results from Experiment 1. First, we fitted participant-specific 
psychometric functions to trials in which either two typically structured scenes or two 
atypically structured scenes were shown. a) Data and psychometric functions for an 
example participant. b) Psychometric functions based on the average slope and PSE 
across participants. c) Slopes were shallower when object numerosities were 
discriminated between two typically structured scenes than when they were 
discriminated between two atypically structured scenes. Error bars show standard 
errors of the mean. Gray squares are data from individual participants. Second, we 
fitted psychometric functions to trials in which a typically structured scene was shown 
together with an atypically structured scene. d) Data and psychometric function for an 
example participant. e) Psychometric functions based on the average slope and PSE 
across participants. f) PSEs were shifted positively, indicating an underestimation of 
numerosity in typically structured, compared to atypically structured, scenes. Error bars 
show standard errors of the mean. Gray squares are data from individual participants. 
 
The results of Experiment 1 show that the number of objects contained in typically 
structured scenes is less accurately estimated and that the number of objects 
contained in typically structured scenes is underestimated relative to atypically 
structured scenes. These findings suggest that grouping processes specific to typically 
structured scenes reduce their perceived complexity. 
 
Experiment 2 
 
In Experiment 2, we tested whether the differences between typically and atypically 
structured scenes could potentially be explained by low-level visual confounds that 
were introduced during the generation of the atypically structured scenes. Although we 



paid close attention to not introducing changes in visual features like the eccentricity 
or overlap of objects, we could still have introduced low-level differences that can 
explain the underestimation of numerosity in the typical scenes. To control for such 
differences, we replicated Experiment 1 (but only featuring trials in which a typically 
structured scene was paired with an atypically structured scene). Critically, each trial 
was once presented with upright scenes and once with inverted scenes. If the 
differences between typically and atypically structured scenes would indeed stem from 
low-level feature differences, they should be preserved across orientations. If the 
differences are specific to the upright conditions, then they are related to the unique 
possibility of grouping objects in the upright and typically structured scenes (Kaiser et 
al., 2014; Stein et al., 2014).  
 

 
 
Figure 3. Results from Experiment 2. Here, we examined trials, in which a typically 
structured scene was shown together with an atypically structured scene (as in Figure 
2d-f). We fitted participant-specific psychometric functions separately for trials in which 
the scenes were upright or inverted. a) Data and psychometric functions for an 
example participant. b) Psychometric functions based on the average slope and PSE 
across participants. c) For the upright scenes, PSEs were shifted positively, replicating 
the result from Experiment 1. This shift was absent for inverted scenes. Error bars 
show standard errors of the mean. Gray squares are data from individual participants. 
 
Here, we fitted psychometric functions separately for trials with upright and inverted 
scenes. For the upright scenes, we again found a significantly shifted PSE, t(34)=2.0, 
p=0.048, d=0.35 (comparison of the PSE against zero; Figure 3), replicating the results 
from Experiment 1 and indicating that the number of objects in typically structured 
scenes was underestimated compared to atypically structured scenes. The effect was 
less pronounced than in Experiment 1, but this difference can be attributed to two 
outlier participants with strong negative shifts in their PSE (see Fig. 3c). Critically, we 
did not find a similar shift in the PSE for inverted scenes, t(34)=0.5, p=0.65, d=0.08, 
and the shift in the PSE was significantly greater for the upright than for the inverted 
scenes, t(34)=3.3, p=0.002, d=0.56. Slopes did not differ between conditions, 
t(34)=0.3, p=0.80, d=0.04. This indicates that participants did equally well in 
discriminating numerosities for upright and inverted scenes. This suggests that object 
individuation is not necessarily impacted by inverting a scene. 
 
The results from Experiment 2 replicate the underestimation of object numerosity in 
typically structured scenes observed in Experiment 1. They further show that the 
reduction in perceived complexity for typically structured scenes cannot be explained 



by low-level differences between the typically and atypically structured scenes in our 
stimulus set. 
 
Discussion 
 
Our study used an object numerosity discrimination paradigm to quantify the perceived 
complexity of naturalistic scenes (schematic miniatures of living rooms and kitchens). 
We specifically tested whether typically structured scenes are perceived as less 
numerically complex, that is, whether the number of objects is underestimated in 
typically structured, compared to atypically structured scenes. Across two experiments, 
our study yielded three key results: First, participants were less sensitive to object 
numerosity when comparing two typically structured scenes, relative to comparing two 
atypically structured scenes. This suggests that grouping processes present in typically 
structured scenes hamper the accurate individuation of objects. Second, when 
comparing numerosity between a typically and atypically structured scene, the typically 
structured scene needed more objects to be judged as containing an equal number of 
objects to an atypically structured scene. This shows that grouping processes lead to 
a relative underestimation of object numerosity when scenes are structured in line with 
real-world regularities and thus allow for effective grouping of objects. Finally, we show 
that the underestimation of object numerosity for typically structured scenes is only 
observed for upright, but not inverted, scenes. This shows that the effect is not related 
to low-level visual differences between the typically and atypically structured scenes. 
Together, our results show that participants reliably underestimate the complexity of a 
scene’s object content when a scene is typically structured, suggesting that grouping 
processes render scenes less complex to the visual system than they appear to be. 
 
Our findings support previous observations that grouping processes are specifically 
observed when objects adhere to real-world regularities (Kaiser et al., 2019). Here, we 
provide a novel measure for testing how such grouping processes impinge on the 
perceived complexity of scenes: When objects contained in typically structured scenes 
can be grouped, they are judged as containing less objects than when scenes are 
atypically structured. This finding is consistent with a recent report, in which object 
numerosity perception was, if anything, less accurate in natural, compared to artificial, 
displays (Odic & Oppenheimer, 2023). This effect may be attributed to grouping 
rendering numerosity estimates more inaccurate. 
 
Our findings further have implications for quantifying the complexity of natural scenes 
by simply counting the individual objects in a scene. It has been argued that such 
approaches, if anything, underestimate the number of objects contained in a scene, as 
objects can often be broken down in meaningful parts, which would render the number 
of objects even higher (Wolfe et al., 2011a). Our findings suggest the contrary: 
Counting individual objects may overestimate the complexity of natural scenes, as 
grouping processes change the units of processing from (more) individual objects to 
(fewer) groups of objects. Future studies could test whether taking such grouping 
processes into account when estimating a scene’s complexity can better align models 
of visual processing from simple visual stimuli with data from more naturalistic 
experiments.  
 
It is worth noting that the underestimation of object numerosity in our study was 
numerically not dramatic. For instance, in Experiment 1, a typically structured scene 
needed just one object more to be judged as containing an equal number of objects as 



an atypical one. However, our task forced participants to individuate separate objects. 
This individuation may override grouping processes to some extent, leading to an 
underestimation of grouping effects in scenarios where individuation is not explicitly 
required. In many real-world situations, groups of objects are entirely task irrelevant, 
so that they can be easily suppressed to facilitate the processing of task-relevant 
information (see Kaiser et al., 2014). In such situations, complexity may be reduced 
much more drastically than in our task. 
 
Finally, our study uses a very specific class of stimuli: schematic scene miniatures that 
are mimicking the structure of natural scenes but are not faithfully resembling all 
aspects of everyday environments. Future studies need to test whether similar effects 
can be found in real-world scene photographs that are structured to varying degrees. 
Furthermore, it will be interesting to see whether our results extend to grouping 
processes for other visual content, such as action-related grouping of objects 
(Humphreys & Riddoch, 2007) or social relations among human agents (Papeo, 2020). 
 
Together, our study provides novel evidence for a reduction of perceived complexity in 
structured natural scenes. This underestimation can render numerosity estimation in 
natural scenes less accurate, particularly when many objects are present. On the 
flipside, it likely mirrors a reduction of the effective complexity of natural scenes, 
caused by object grouping processes in the visual system. This reduction of complexity 
may be critical for adaptive visual cognition in real-world environments. 
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