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Highlights
Neurally inspired deep neural networks
(DNNs) have recently emerged as
powerful computer algorithms tackling
real-world tasks on which humans
excel, such as object recognition,
speech processing, and cognitive
planning.

In the absence of scientific explana-
tions regarding how humans solve
such tasks, some cognitive scientists
have turned to DNNs as models of
Artificial deep neural networks (DNNs) initially inspired by the brain enable
computers to solve cognitive tasks at which humans excel. In the absence of
explanations for such cognitive phenomena, in turn cognitive scientists have
started using DNNs as models to investigate biological cognition and its neural
basis, creating heated debate. Here, we reflect on the case from the perspec-
tive of philosophy of science. After putting DNNs as scientific models into
context, we discuss how DNNs can fruitfully contribute to cognitive science.
We claim that beyond their power to provide predictions and explanations of
cognitive phenomena, DNNs have the potential to contribute to an often over-
looked but ubiquitous and fundamental use of scientific models: exploration.
human brain responses and
behaviour.

In visual and auditory processing,
DNNs were found to predict human
brain responses and behaviour better
than other models.

The use of DNNs as models in cogni-
tive science has created a heated
debate about their scientific value: in
particular, are DNNs only valuable as
predictive tools or do they also offer
useful explanations of the phenomena
investigated?
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The Contested Value of Deep Neural Networks in Cognitive Science
In recent years, neurally inspired [1,2] artificial deep neural networks (DNNs; see Glossary)
have revolutionised first computer vision [3] and subsequently other domains such as natural
language processing [4], control and planning (such as playing games, e.g., Atari and Go [5,6]),
and navigational tasks (such as finding the shortest path on a subway map [7]).

DNNs are computational models consisting of many simple processing units (akin to neurons)
that work in parallel and are arranged in interconnected layers. Simple neural networks consist
of an input layer and an output layer; when more layers are stacked, the networks are called
deep [8,9]. A DNN learns to perform particular tasks through training, during which the strength
of connections between units is learned. Subsequently, the trained DNN is used to perform the
same task on novel inputs.

While DNNs were built with an engineering goal in mind, for example, to make a computer solve
a particular classification problem, recruiting DNNs for cognitive science might yield useful
insights. In this spirit, researchers have shown that DNNs predict human perceptual similarity
judgements [10,11] and outperform any other model in accounting for neural activity in primate
sensory cortices [12–18] (Figure 1).

However, this use of DNNs has sparked heated debate over its scientific value (Box 1). The goal of
this opinion article is to evaluate what is at stake from a bird’s-eye view. Here, we discuss how
philosophy of science [19] informs the debate on DNNs (Figure 2). Specifically, we first put DNN
models into a broader context, arguing that they find their place in the plurality and diversity of
models in cognitive science. Next, we discuss DNNs in the context of the two main goals of
science: prediction and explanation [20]. We claim that DNNs have diverse virtues for both goals.
Finally, we draw attention to exploration [21] as a fundamental modelling practice. We claim that by
virtue of their excellent exploratory potential DNNs can play an important role in scientific progress.

The Nature of Good Scientific Models
To evaluate whether DNNs are good scientific models, we need to agree on what makes a good
model in the first place. Can we formulate a list of properties good models fulfil and check DNNs
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Glossary
Analogy: a similarity between
relations in two different domains.
Box-and-arrow model: a model of
information processing in which
boxes represent components of an
information processing system, and
arrows represent information flow
between those components.
Deep neural network: a computer
algorithm inspired by biological
neural networks, consisting of units
akin to neurons and defined in
function by the connection between
the units (Figure 1A). Units are often
not connected to all other units but
ordered in layers. Layers between
the input and output layers are called
hidden layers, and neural networks
with hidden layers are called deep.
Desiderata: plural of desideratum
(lat.), denoting something that is
desired as essential.
Explanandum: a description of the
phenomenon to be explained.
Explanans: a set of sentences cited
as evidence for the phenomenon to
be explained, including a natural law
or statistical regularity.
Inferior temporal (IT) cortex: the
inferior part of temporal cortex in
non-human primates and part of the
ventral visual stream. It is the end
stage of a sequence of cortical
processing steps starting in visual
area V1. It is most prominently
described as harbouring cells that
respond relatively specific to
particular objects or object
categories but tolerant to changes in
viewing conditions such as size,
angle, and lighting. The putative
functional analogue in humans is the
lateral occipital complex, a set of
regions responding more strongly to
images of intact objects than to
scrambled objects.
Ready-made: an art term (strongly
connected to Marcel Duchamp)
designating an everyday object that
was made for some purpose, found
by an artist, and chosen as a piece
of art with little or no modification.
Teleological: from Greek telos (end,
goal, purpose), related to a goal,
aim, or purpose.
Two-stream hypothesis:
hypothesis put forward on the basis
of neuropsychological data. It divides
the visual brain into a ventral and
dorsal stream. The ventral stream is
meant to process the content of

Box 1. Arguments Pro and Contra DNNs in Cognitive Science

Arguments of critics and proponents can be ordered into five points (for an excellent historical exposition, see
chapter 4 in [1]).

Overall potential: Critics are pessimistic about the outlook of DNNs in cognitive science. They draw attention to their
limitations, and the divergence between the limited range of tasks a DNN can do today, and the many cognitive
functions lacking explanation [45,80]. Fundamentally different approaches might be needed to solve many cognitive
tasks. Proponents stress the potential unprecedented opportunities [49,63]. They see promise for a new convergence
of artificial intelligence (AI) and neuroscience/psychology, and a new framework for relating brain function and complex
real-world behaviours [48,79,81,82].

Explanation: Conceding that DNNs might predict brain activity or behaviour well, contrasting prediction and explana-
tion, critics argue that DNNs fall short of explaining the phenomenon [45]. Proponents argue that DNNs do explain either
in the same way as other models, in a qualitatively different way [13,15,36,49], or that DNNs afford rich post hoc
explanations.

Interpretation: Related to explanation, critics characterise DNNs as ‘black boxes’, where the contribution of individual
model components remains untraceable [45,80]. Thus, using DNNs to explain biological brains means exchanging one
opaque system for another, without additional gain. Proponents, while conceding that DNNs are not immediately
transparent, argue that this does not ultimately preclude their interpretation [83]. DNNs offer better access to
experimentation than humans as they can be investigated swiftly and cheaply using a growing set of techniques to
make them transparent (often termed in silico electrophysiology) [62].

Biological realism: While conceding that DNNs are inspired by biological neural networks, critics argue that DNNs lack
biological realism. For example, the DNN units mimicking neurons are highly abstracted and lack most of the dynamics
of biological neurons. Proponents instead point out that abstraction and idealisation are essential to any modelling
endeavor and thus no a priori reason to reject a model [49,63]. Furthermore, future developments may increase the
functional similarity between DNNs and the biological brain.

Scientific validity: Critics say that the current use of DNNs to learn about biological systems is unscientific because it is
untheoretical. DNNs were not made to model brains or human behaviour, and they are not deducted from theories to
test hypotheses. Proponents argue that the origin of models is irrelevant to their value in science [84]. Instead, they
should be judged by their power for explanation or prediction only.
against these properties? Or, can we select a particular model that we believe to be an excellent
scientific model as a standard and compare DNNs against it? Reflecting on the use of models in
a broader scientific context, we argue that the case is not as simple as that.

No One Perfect Model: Necessary Trade-Offs
One way to determine what makes a good model is to define what would make the best
possible model and then compare. Can we have that one, perfect model for any one
phenomenon of interest in cognitive science? Is the current state of model diversity therefore
an interim stage to be overcome? We claim that this is unlikely, as favoured properties of
models in cognitive science (i.e., desiderata) have to be traded against each other [22], and no
single model can fulfil all of them.

Desiderata fall into two classes: theoretical and non-theoretical. Theoretical desiderata for
models of biological phenomena are precision (how exact is the model outcome), realism (how
similar is the model to the phenomenon), and generality (how well does it generalise from one
case to another) [23]. If the class of phenomena to be modelled is fully homogenous, that is, all
members of the class have the same properties, precision, realism, and generality can be
achieved simultaneously. However, when this is not the case, a model cannot be fully precise
(model each member of the class correctly) and general (model all members) (http://
philsci-archive.pitt.edu/1000/; [24,25]).
2 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy

http://philsci-archive.pitt.edu/1000/
http://philsci-archive.pitt.edu/1000/


TICS 1886 No. of Pages 13

visual scenes (‘what’ is perceived),
whereas the dorsal stream mediates
knowledge of ‘where’ something is
perceived, or ‘how’ it can be used.
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Figure 1.

(Figure legend continued on the bottom of the next page.)

Rationale and Example Uses of DNNs in Cognitive Neuroscience. (A) Example of a deep neural
network (DNN) used to categorise objects. DNNs are computer algorithms inspired by biological networks. They consist of
artificial units akin to neurons. Units are connected to each other, and the connection weights determine what a unit
computes, that is, what input features it represents. Units are usually ordered in layers. An input layer is activated directly by
the input (here, pixel values), and an output layer produces a response given the task the DNN was trained on (here, a
category label). Networks that have layers between input and output layers, called hidden layers, are called deep. Units
between layers can be connected feed-forward and feed-back, and within a layer in recurrent manner. During training, the
DNN learns features needed to carry out the task, rather than the modeller setting the features explicitly (for introductory
reviews, see [36,49,63,79]). (B) Researchers in cognitive science use DNNs to predict brain activity and behaviour.
(C) Example DNN-brain activity relation. An eight-layer DNN trained on object categorisation was compared to fMRI brain
activity. There was a hierarchical relationship: early layers of the DNN predict low-level visual brain regions, and later layers
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Figure 2. Deep Neural Networks in the Light of Considerations about Model Nature and Model Use in
Science. Assessing model nature, we argue that there are many models of the same phenomenon (plurality), that these
models likely differ from each other (diversity), and that where the model comes from is irrelevant for its scientific value
(origin). DNNs fit into this as inhabiting one particular niche in the world of models in cognitive science. Assessing model
use, we argue that DNNs hold promise for all three functions of models in science: for prediction, for explanation, and for
exploration.
The behaviour and brains of biological beings are not homogeneous at any scale: they are
different between species and individuals, and they change with experience and across the
lifespan. Thus, there cannot be one model that is perfectly precise and general, or realistic and
general simultaneously. Instead, there will be many models fulfilling desiderata differentially
well. For example, we can either model vision for a particular person, or across a group of
people, or for a diverse set of organisms (e.g., humans and spiders), but not for all of them at
once. Making the model’s target and the theoretical desiderata explicit is thus necessary to
enable proper judgement about modelling success and its comparison to other models.
Transferred to the debate on DNNs, critique or praise about a DNN’s achievement can only
be appreciated with respect to the desiderata pursued and what was intended to be modelled
with what aim.

In scientific practice, non-theoretical desiderata, that is, practical considerations such as speed
of computation, ease of manipulation, and ethical considerations, often take precedence over
theoretical desiderata. Imagine we had a model of the brain that fulfils all theoretical desiderata
but is too slow to compute interesting results at relevant time scales. In this case, a model that
sacrifices theoretical desiderata for speed is scientifically preferred. As another example,
consider animal models: while for theoretical reasons (e.g., realism) an animal might be a
suitable model for humans, ethical limitations on animal experiments can pose severe
predict higher level regions [13]. (D) Example DNN-behaviour relation. A DNN trained on object categorisation predicted
the perceived (similarity judgments) rather than the physical similarity (i.e., pixel values) of visual stimuli [10]. Abbreviations:
EcoG, electrocorticography; MEEG, magnetoencephalography/electroencephalography.
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constraints. DNNs excel in these non-theoretical desiderata: they compute cheaply and swiftly,
and their investigation has fewer ethical limits than many other models.

DNNs as One of a Diverse Set of Models
Given the need for many different optimal models (relative to a set of desiderata), will all those
models ultimately be of the same kind, for example, all DNNs, or will they be diverse? We offer a
plausibility argument. Bewilderingly diverse sets of models coexist and enjoy continued
success across scientific disciplines that are at different degrees of maturity. This set includes
single equations (e.g., the Ising model [26] in quantum physics), physical scale models that are
copies of the phenomenon (e.g., miniature bridges in engineering), and complex computational
models (e.g., climate or economic models). In cognitive science, the set ranges from box-and-
arrow models (e.g., Baddeley’s model of working memory [27]) to computational models
(e.g., symbolic [28], neural networks [1], dynamical systems [29]) to whole animals (e.g., Aplysia
or mice). The coexistence and continued success of diverse models across scientific disciplines
and at different degrees of maturity speaks against the idea of a single best kind of model.
Instead, it argues for embracing the plurality and diversity of models [30,31].

Transferred to the debate on DNNs, this suggests that at any time a single unified model unlikely
will do all the work in cognitive science but that a multitude of different models will. We thus plea
to neither dismiss DNNs prematurely nor to envision them as the kind of model that cognitive
science will ultimately progress to.

The Origin of Models Is Scientifically Irrelevant
In spite of their plurality and diversity, models are often considered scientific by virtue of a
common origin: they are all derived from a theory to instantiate or test that theory. However, this
proposal squares badly with scientific practise. Models are rarely straight-forwardly deduced
from theory: one cannot push a button in the theory and a model pops out (‘vending machine
view of models’) [32]. More similar to the artistic process than logical deduction, there is no
codified set of rules in model building. Instead, the process often involves creativity, chance,
and transfer [24]. Furthermore, as mentioned above, model building involves fulfilling non-
theoretical desiderata such as simplification and approximation.

The DNNs used today in cognitive science are not derived from theory to test particular
predictions of that theory. Admittedly, DNNs are loosely inspired by classical theories of
biological brain function, but they were not built to test those theories. Therefore, the hijacking
of DNNs by cognitive scientists is more analogous to the use of ready-mades in art. However,
this is no reason to dismiss the model, as the origin of DNNs plays no role for their scientific
value.

In sum, putting DNNs as models in cognitive science into the broader context of scientific
modelling in general, we made three observations: (i) all models of cognitive phenomena
constitute trade-offs between desiderata, and also DNNs offer unique strengths and weak-
nesses; (ii) the set of models used in cognitive science is diverse, and DNNs are one particular,
useful kind; and (iii) the origin of a model is irrelevant for its scientific value, and so are the DNNs’
origins. Having established their place among a diverse set of models, we discuss how DNNs
fare in scientific prediction, explanation, and exploration.

The Predictive Power of DNNs
In technology and engineering the primary goal is to create artefacts that do things (i.e.,
correctly predict a particular outcome), while explanation often takes second place [33]. Are
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 5
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DNNs useful in cognitive science in this way? While DNN critics concede the predictive power of
DNNs, they often dismiss it as less valuable for science than explanation. Here, we affirm the
value of prediction on two grounds.

A pragmatic reason is that due to its predictive power a DNN could be used akin to a tool to reach
practical aims without direct recurrence to explanation. One promising future direction is medical
applications. Imagine a patient that has a lesion in visual cortex, for example, through stroke, and
consequentially suffers from a loss of object vision (visual agnosia). For this patient, an artefact
predicting brain activity in the damaged cortex, such as a DNN, could serve as a prosthesis. The
scientific benefit is in predicting and thus substituting brain function; explanation and understand-
ing are secondary. Admittedly, current DNNs are far from perfect in mimicking the full neural
dynamics of visual cortex and object recognition behaviour [34] that would be necessary to restore
visual functions faultlessly. They roughly model neural signals about an object’s category, location,
or pose [35]. However, for patients facing a sudden loss of object vision, even an imperfect
restoration of such basic abilities would be medically highly relevant.

Another promising application is the non-invasive experimental control of brain activity [36].
Recent research has demonstrated the feasibility of using DNNs for systematically manipulating
brain activity in visual regions V1 [37] and V4 [38]. By using DNNs to predict visual brain
responses, the authors were able to synthesise images that drove neural ensembles into
predetermined desired states. This experimental control over brain activations promises new
insights into neuronal functioning. For example, consider the interplay of multiple brain regions
during sensory processing. Using optimal stimuli derived from DNN analyses allows for tightly
controlling activity in one region while establishing the workings of another region.

A second, more theoretical reason is that predictive power can be a stepping stone towards
explanation. Consider the benchmarking of different models with respect to how well they
predict brain activity [12,15,39]. For one, this comparison allows cognitive scientists to pre-
select models performing well as promising candidates for further inquiry [15]. Second,
comparison of models differing in success might reveal factors relevant for their success
and thus contribute to explanation [12,13,15,39,40]. Third, predictive power ultimately is a
criterion for successful explanation: we cannot be satisfied with a model that offers an
explanation but also does not predict well [41,42]. Current DNNs thus constitute a clear,
quantitative challenge to current and future models that aim at offering scientific explanations.

In sum, we argue that the predictive power of DNNs is useful for cognitive science in two ways: it
allows DNNs to be used to pursue practical aims such as experimental control or neural
substitution, and it is a stepping stone towards explanation. We turn next to how DNNs can do
explanatory work proper.

The Explanatory Power of DNNs
How can a model do explanatory work in cognitive science (Box 2)? The blueprint notion many
researchers have in mind is so-called mathematical–theoretical modelling [43,44]. There, a few
relevant variables for describing a phenomenon are identified, it is hypothesised how they
interact, and the variables and their interaction are modelled mathematically. Each variable is a
priori linked to a part of the phenomenon modelled in the world, such that changes in the model
variable are directly interpretable: the model is transparent.

Compared to this class of models DNNs indeed look different. A DNN often has millions of
parameters that are learned by the network rather than being set a priori. It is therefore not
6 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Box 2. The Logical Form and Concept of Explanation

In everyday practise, scientists conduct experiments and interpret the results such that other scientists acknowledge
them as good explanations. However, what makes an argument a good explanation is not easy to describe. There is a
diversity of notions differing across disciplines and contexts [85,86]. How do DNNs fit in?

The deductive-nomological notion [87]. An explanation consists of an explanans and an explanandum. The
explanandum must follow logically from the explanans (the deductive part). The explanans must be true, and it must
contain a law of nature necessarily (the nomological part). However, few scientists, and cognitive scientists are no
exception, formulate their arguments explicitly in this form, and it is unclear whether or how to apply laws of nature in the
context of evolved biological beings and their cognition.

The inductive-statistical notion [88]. The explanandum follows probabilistically rather than logically from the
explanans (the inductive part), and the explanans contains a statistical regularity (the statistical part). While cognitive
scientists working with DNN do not explicitly use this form, it is conceivable that their statements could be transformed
into such a form.

The causal mechanistic notion [89]. The rationale is that to explain a phenomenon is to give its cause. The
explanation enumerates the causal processes and how they interact up and lead to the phenomenon. Cognitive
scientists working with DNNs are beginning to use this notion in the context of experimental interventions rather than
observations [38].

The unificationist notion [90,91]. Explanation amounts to unify different phenomena in a common account, showing
connections and relationships between phenomena whose relation was previously unclear. Ideas of DNNs as general
frameworks for modelling brain function and cognition [48,49,63] are reminiscent of this notion.

The pragmatic notion [43,92]. Pragmatists stress that whether an explanation is successful, depend irreducibly on
facts about the interests, goals, and beliefs of those providing or receiving explanation. This is directly relevant to DNNs
in cognitive science given the interdisciplinarity of the endeavour. Different disciplines (such as psychology, biology, and
computer science) have different standards and criteria of success. Thus, we need to acknowledge and deal with such
differences to fairly assess expounded arguments.
immediately apparent how the variables map onto the world and how they interact among each
other. Without fully understanding its inner workings, the DNN appears as a black box. This poses
a challenge for explanations based on DNNs: one cannot explain one black box by another [45].

To make the distinction more concrete, consider research on visual representations in pri-
mates. Mathematical–theoretical modelling identified a few variables, for example, spatial filters
or geometrical primitives [46,47] that can be directly linked to cortical activations. By contrast,
DNN-based modelling yields no a priori mapping between model parameters and neurons; a
DNN’s many parameters are learned during training, in a non-transparent way. From the
perspective of the mathematical–theoretical modeller, using DNNs to predict brain activations
(Figure 1) may appear questionable.

Should we therefore conclude that DNNs have no explanatory power? There are at least three
mutually non-exclusive reasons why we should not.

The first argument is that DNNs do provide an explanation but of a qualitatively different kind
[15,48]. The answer to a question such as ‘why does a DNN unit behave such and such’ is not
‘because it represents this or that feature of the world’, but ‘because the unit needs to respond
such in order to fulfil its function in enabling a particular objective, such as object recognition’.
That is, the nature of the explanation is teleological.

A second perspective is that appearance is deceptive, and DNNs are effectively used in the
same way as traditional mathematical–theoretical models. After all, DNNs are fundamentally
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 7
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defined by a handful of parameters set a priori, such as architecture, training material, training
procedure, and objective [13,49]. These variables directly refer to specific phenomena in the
world, the model is thus transparent and has explanatory power. The fact that the handful of
variables in DNNs is different from the handful of variables in other models is not a problem by
itself but follows from the fact that models differ in what aspects of the phenomenon they
emphasise, and which they hide (Box 3) [50]. Furthermore, the fact that historically DNNs were
first compared to the brain without explicit identification of the crucial parameters relevant for
explanation is neither a principled reason that DNNs cannot provide explanations of this kind.
Last, the fact that a parameter such as ‘training material’ is in fact a very complex set of data
does not defeat its use as a single, simple parameter in an explanation. In the context of DNN
modelling, it reflects one single relevant part of the DNN modelling procedure. Such an
abstraction from fine-grained levels of description into single parameters at higher levels of
description is common practice in the modelling of complex phenomena. Naturally, this in no
way precludes the possibility of explanatory attempts at a finer grained level of description.

A third perspective is that immediate opaqueness is only an intermediary stage that will be
overcome by DNN models’ strong potential for post hoc explanations. There is a growing
method repertoire to make DNN computations explicit through visualisation, text description, or
finding representative examples [51–61]. Uncovering the mapping between model variables
and the world could make DNNs transparent and thus explanatory. As such, DNNs in cognitive
science appear no different than model organisms in biology [62]. While model organisms are
opaque and the transfer of insight from model to target phenomenon requires additional work,
their explanatory value in providing experimental access is well acknowledged. Note also that
complex (and thus immediately opaque) models might be inevitable for modelling complex
Box 3. Models Are Not Neutral Tools

Models are not neutral tools that we use at will, and DNNs are no exception. Instead, DNNs shape the way we think and
do science.

Models emphasise some aspects of the world, while hiding others. Models that are computationally well-
developed formalisms allow us to do particular things easily, while others are hard to achieve. For example, consider
programming languages: what is easily expressed in one formalism can be cumbersome in another. Analogously, two
models of the same phenomenon, such as a DNN and a mathematical–theoretical model, may enable and restrain
different ways of thinking, respectively [1,24,50].

Models shape the perception of problem situations and what counts as a solution. A model’s particular
affordances and constraints affect how users perceive problem situations, on what they focus attention, and what they
perceive as a solution [21]. In the way that for a man with a hammer everything is a nail, for a scientist with a DNN every
problem may be solved by the DNN, for example, by learning an implicit solution from large data rather than through
explicit engineering. Consider for example the contingency and historicity of the proposed minimal criteria for future
modelling of sensory cortex, formulated after DNNs were shown to outperform other models in that domain [36]: models
are to be stimulus-computable (model accepts arbitrary stimuli from target domain), mappable (model components
map onto parts of the neural system), and predictable (models provide stimulus-specific predictions for neural activity).
These criteria happen to be the criteria that current DNNs fulfil. They are reasonable in so far as that future research shall
not stay behind the state of the art. However, their force derives from the availability of a model that fulfils them today, not
from theory. If hypothetically a DNN had been found that excelled on another dimension, for example, biological realism
using spiking units, that dimension would have reasonably been claimed a minimal criterion.

Models shape social reality. Once technological artefacts are commonly used, they are not mere tools to realise pre-
defined scientific goals but begin to shape social reality in a way that affects the user’s desires and interests. Scientific
models such as DNNs are no exception. The demand for skilled DNN researchers influences graduate programs. The
rise of DNNs in one field (e.g., computer vision) suggests analogous solutions in other fields (e.g., AI and cognitive
science) [8], creating further demand for education, and for novel venues to discuss research [93]. Thus, DNNs shape
what companies want to invest in, students want to learn, and researchers want to research.

8 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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phenomena such as human behaviour and brain activity that depend on large amounts of world
knowledge that cannot be easily summarised [63]. Simpler (and thus immediately more
transparent) models might not be able to capture that knowledge. The goal must therefore
be to reduce opaqueness, but not at the price of predictive power.

Together, we presented three different perspectives from which DNNs have explanatory power:
(i) they provide teleological explanations; (ii) despite their deceptive appearance, they provide the
same explanations as traditional mathematical theoretical models; and (iii) owing to their com-
plexity, they have strong potential for post hoc explanations. We now turn to a third, often
underappreciated role of scientific models beyond prediction and explanation: exploration.

The Exploratory Power of DNNs
An idealised view of natural science is that it proceeds by deriving hypotheses from a theory and
testing them in experiments. But what to do if a fully-fledged and convincing theory is missing?
Then we need to explore [64,65] to create starting points for new theories, rather than predict or
explain. This means a shift of perspective from models as tools for predictions, or akin to
theories for explanation, to exploration [21].

Observing the scientific practise indicates that exploration is an omnipresent strategy. We learn
from models by building and manipulating them. Modellers play with their models, exploring
how they behave and getting a ‘feel’ for them [66].

How do DNNs in cognitive science fit into this picture? We claim that they contribute to
exploration exceedingly well. First, the absence of a fully-fledged theory of any single cognitive
function gives models an important exploratory role. Second, their complexity makes DNNs
particularly well suited for exploration: there is lots to explore.

We highlight three ways how exploration using DNNs benefits cognitive science: (i) by generating
new hypotheses that can be investigated empirically, (ii) through proof-of-principle demonstra-
tions that create plausibility, and (iii) by determining the suitability of the target phenomenon.

DNN Exploration Generates New Hypotheses
Exploring models can create novel ideas. How does this formally work? Mary Hesse offered a
canonical analysis in terms of analogies [67]. Any model has positive, negative, and neutral
analogies with respect to the target modelled. Positive and negative analogies are character-
istics that are known to be shared or not shared, respectively, by the model and the target.
Neutral analogies are those for which we do not know whether the model and the target share
them. Negative analogies are due to the distortions, idealisations, and abstractions that limit a
model’s scientific value. While positive and negative analogies are established relations
between model and target, and thus offer no new insight, neutral analogies allow us to learn
novel facts about the target.

Transferred to the debate on DNNs, this means that the investigation of neutral analogies
between DNNs and the brain is a promising source of new hypotheses for empirical testing. For
example, like the brain, DNNs consist of rather simple processing units whose concerted
activation enables complex functions such as object recognition (positive analogies). However,
while DNNs are made in silica and their units have simple time-invariant dynamics, human
brains are organic and show highly complex dynamics (negative analogies). The neutral
analogies comprise all properties of which we do not know whether DNNs and brains share
them, or not.
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 9
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DNNs as Proof-of-Principle Demonstrations
In engineering, proof-of-principle demonstrations show the feasibility of a particular approach
to a problem by creating an artefact that solves the problem. Their success motivates further
scientific attention.

Transferred to the debate on DNNs, proof-of-principle demonstrations highlight the feasibility of
modelling behaviour or neural data using DNNs and thereby motivate further scientific attention
towards DNNs.

To exemplify, feed-forward DNNs trained on object categorisation reach performance levels
similar to humans on particular object recognition tasks, and they accurately predict object-
related brain activity [12,13,15]. These results are proof-of-principle demonstrations for the
feasibility of purely feed-forward, bottom-up rather than feed-back, top-down dependent
solutions. While they do not definitely prove that object vision solely relies on bottom-up
processing, such investigations motivate further research exploring how much of vision a
purely bottom-up approach can account for. Conversely, if particular analogies between DNNs
and the brain only emerge when top-down wiring is implemented in the DNN model [68–70],
one could infer that top-down processes are also recruited during neural processing.

DNNs Assess the Suitability of the Phenomenon Modelled
In theories that are not fully fledged, the concepts that identify and distinguish parts of the
phenomena to be explained are not fully established either. In this case, experimentation and
theoretical concept development are intertwined activities [71], where concepts (operational-
isations) are refined and revised in the light of experimental results.

Modelling can thereby have the same effect as experimentation [72,73]: it can make us change
our concepts. For example, by observing the model’s behaviour, we find novel regularities that
may become part of the concept. Or, by determining under which conditions modelling results
are reproducible, we engage in concept stabilisation [64]. In effect, the concepts we use to
identify and describe a phenomenon change.

To transfer this to the debate on DNNs, consider two examples in the investigation of the neural
basis of object vision. In the first example [35], the authors explored how a DNN trained on
object categorisation predicts different object properties. As expected, object category was
increasingly well predicted along the DNN’s processing hierarchy. Given that successful object
recognition requires tolerance against changes in category-orthogonal properties (such as
location or size), it seemed plausible to assume that the prediction of such orthogonal object
properties diminishes along the processing hierarchy. Surprisingly, the authors found the
opposite: the DNN predicted category-orthogonal object properties increasingly well along
the DNN’s processing hierarchy, too. This led to a hypothesis challenging current neural
theories of object vision: inferior temporal (IT) cortex in primates (thought to represent
object category across viewing conditions) may be representing such category-orthogonal
properties, too. Analysis of electrophysiological data confirmed this prediction. Here, model
exploration and subsequent empirical investigation led to an important refinement of the
classical two-stream hypothesis of the visual brain [35].

Another example involves recent findings on transfer learning, where a DNN trained on one task
(usuallyobjectcategorisation) is evaluated in another task [74–78]. During transfer learning, typically
the pre-trained DNN’s output layer is replaced; next, the mapping between DNN activations and
the output layer is re-trained on another task. This procedure tests whether features learned during
10 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Outstanding Questions
We outlinedthatparticularly neutralanal-
ogies (unknown correspondences
between model and phenomenon) and
negative analogies (known divergences
between model and phenomenon) drive
modelling development. For DNNs,
which of these analogies are relevant
for improving the fit between DNNs
and brain responses or behaviour?

Can the fit between DNNs and biolog-
ical systems be improved by infusing
DNNs directly with neural or behav-
ioural data? Will such methods yield
DNN models that more closely resem-
ble the human brain and better predict
successes and errors in human
behaviour?

Given the diversity of models and
modelling goals in cognitive science,
how can we ensure fair assessment
in terms of explanatory power? How
can we unify standards for reporting
and model use in an interdisciplinary
research field where participating dis-
ciplines have disparate goals and
standards?

Can we practically overcome the bar-
riers for the clinical use of DNNs, for
example, in patients with cortical dam-
age (e.g., after stroke or after surgery)?
In such cases, can DNNs be used as
substitution devices that sufficiently
restore cortical functioning (e.g., in
vision loss)?

How can we ensure that cognitive and
applied research using DNNs con-
forms to ethical norms such as privacy,
identity, agency, and equality, and how
do we deal with deviations from these
norms? For example, how do we
assess and deal with the challenge that
might come about when a DNN trained
on human data exhibits discriminative
biases for gender or race?

In the future, DNNs may be widely
adopted to replace human judgement,
such as during job interviews, when a
bank assesses a loan application, or in
court. When used in such applied con-
one task are general enough to solve another task. It turns out that a DNN trained on object
categorisation learns features useful for a wide range of tasks, such as fine-grained discrimination,
saliency prediction and scene recognition. Such observations make predictions to which degree
resources underlying different visual functions may be shared in the human brain.

Caveats and Limitations of DNN Exploration
The explorative use of models is subject to several caveats and limitations. First, when modelling
precedes theory, quality standards and benchmarks are not well developed and often implicit. We
plea to give DNNs in cognitive science the benefit of the doubt, avoiding too strict standards that
maycurbbourgeoningdevelopments prematurely. In turn,DNNmodellinghas tousethis leeway for
theory building. Second, the same modelmaybeusedexploratively in onecontext (e.g., togenerate
new hypotheses), but for explanation in another (e.g., as an explicit model of neuronal functioning).
To enable fair assessment, researchers should make transparent how they use the model [30].
Third, exploring models rather than the world bears the danger of mistaking the model for the world.
Investigating DNNs might be mistaken for investigation of the human brain or behaviour. To avoid
this, exploration must be accompanied by experimentation on the target phenomenon.

In sum, the exploratory power of DNNs makes them excellent starting points for new theories
and for revising existing theories. DNN modelling generates new hypotheses, it allows for proof-
of-principle demonstrations, and it helps refine our scientific concepts. To not lead astray,
however, exploration should not be confused with explanation or experimentation.

Concluding Remarks and Future Directions
Taking a bird’s-eye view from the stance of philosophy of science, we took a fresh look on what
is at stake in the debate on DNNs as models for behaviour and neural activity. We emphasise
four take-home messages for future research (Figure 2). First, given the current level of theory
development and the need to trade-off model desiderata, we should embrace DNNs as one of
many diverse kinds of useful models. Second, through their predictive power DNNs have rich
potential as tools for scientific research and application. Third, we should use DNNs' explana-
tory power for theorisation, but make explicit what type of explanation is at stake to allow fair
assessment and criticism. Finally, the exploratory power of DNNs deserves our heightened
attention. The computational complexity of DNNs makes them particularly suited candidates
for exploration, promising theoretical insight that we cannot foresee today.

The development of DNNs is progressing rapidly, and the applications of DNNs in cognitive
science are increasing and diversifying. This means that the types of predictions, explanations,
and explorations employed will diversify accordingly (see Outstanding Questions). Theoretical
discussion accompanying these developments is needed to ensure that cognitive scientists
make the best possible use of DNNs models.
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