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a b s t r a c t 

Looking for objects within complex natural environments is a task everybody performs multiple times each day. 
In this study, we explore how the brain uses the typical composition of real-world environments to efficiently 
solve this task. We recorded fMRI activity while participants performed two different categorization tasks on 
natural scenes. In the object task, they indicated whether the scene contained a person or a car, while in the 
scene task, they indicated whether the scene depicted an urban or a rural environment. Critically, each scene was 
presented in an “intact ” way, preserving its coherent structure, or in a “jumbled ” way, with information swapped 
across quadrants. In both tasks, participants’ categorization was more accurate and faster for intact scenes. These 
behavioral benefits were accompanied by stronger responses to intact than to jumbled scenes across high-level 
visual cortex. To track the amount of object information in visual cortex, we correlated multi-voxel response 
patterns during the two categorization tasks with response patterns evoked by people and cars in isolation. We 
found that object information in object- and body-selective cortex was enhanced when the object was embedded 
in an intact, rather than a jumbled scene. However, this enhancement was only found in the object task: When 
participants instead categorized the scenes, object information did not differ between intact and jumbled scenes. 
Together, these results indicate that coherent scene structure facilitates the extraction of object information in a 
task-dependent way, suggesting that interactions between the object and scene processing pathways adaptively 
support behavioral goals. 
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. Introduction 

Despite the complexity of our everyday environments, perceiving ob-
ects embedded in natural scenes is remarkably efficient. This efficiency
s illustrated by studies that require participants to categorize objects
nder conditions of limited visual exposure: For instance, participants
an tell whether a scene contains an animal or not from just a single
lance ( Thorpe et al., 1996 ; Potter, 1975 , 2012 ), and even when only
imited attentional resources are available ( Li et al., 2002 ). 

The ability to effortlessly make such categorization responses is un-
erpinned by the efficient extraction of object information in visual cor-
ex. Neuroimaging research has shown that the category of task-relevant
bjects can be reliably decoded from fMRI activity patterns in visual
ortex, even when the objects are embedded in complex natural scenes
 Peelen et al., 2009 ; Peelen and Kastner, 2011 ; Seidl et al., 2012 ) or
ovies ( Cukur et al., 2013 ; Nastase et al., 2017 ; Shahdloo et al., 2020 ).
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anRullen and Thorpe, 2001 ; Thorpe et al., 1996 ). Together, these re-
ults highlight that the cortical processing of objects appearing within
ich real-world environments is surprisingly efficient. 

This processing efficiency becomes less surprising if scene context
s not just considered as a nuisance that puts additional strain on our
isual resources. Indeed, contextual information can facilitate object
rocessing ( Bar, 2004 ): For instance, scene context allows for efficient
llocation of attention ( Torralba et al., 2006 ; Wolfe et al., 2011 ; Võ
t al., 2019 ), or for disambiguating object information under uncertainty
 Brandmann and Peelen, 2017 ; Oliva and Torralba, 2007 ). Such findings
emonstrate that object and scene processing mechanisms interact with
ach other to enable the efficient processing of object information. 
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Here, we investigated how the coherent spatial structure of the scene
ontext aids the extraction of object information from the scene. To this
nd, we used a jumbling paradigm, in which we disrupted the scenes’
oherent structure by dividing them into multiple rectangular pieces
nd shuffling those pieces. Classical studies suggest that jumbling dras-
ically impairs participants’ ability to categorize both the scene itself
 Biederman et al., 1974 ), and the object embedded within the scene
 Biederman et al., 1972 , 1973 ). Such impairments can be linked to
hanges in cortical scene processing: We have recently shown that scene-
elective brain responses are less pronounced and contain less scene
ategory information when the scene is jumbled ( Kaiser et al., 2020a ,
020b ). However, it is unclear how these changes in scene-selective ac-
ivations modulate the representation of objects within the scene. 

In the current study, we thus set out to characterize how the pres-
nce of an intact – versus a jumbled – scene context modulates object
epresentations in visual cortex. First, we asked whether cortical object
rocessing is indeed facilitated by the presence of a coherent scene con-
ext. Second, we asked whether such facilitation effects depend on the
bjects being relevant or irrelevant for current behavioral goals. 

To answer these questions, we recorded fMRI activity while partic-
pants categorized objects contained in intact or jumbled scenes. We
ound that fMRI responses across high-level visual cortex were generally
igher for intact scenes than for jumbled scenes, revealing widespread
ensitivity to scene structure. When analyzing object category infor-
ation in multi-voxel response patterns, we found that coherent scene

tructure enhanced object information in object-selective visual cortex.
owever, this enhancement was task-specific: When participants cate-
orized the scenes instead of the objects, we found no such enhancement
f object information. These results suggest that the visual brain uses
oherent real-world structure to more efficiently extract task-relevant
bject information from complex scenes. 

. Materials and methods 

.1. Participants 

Twenty-five healthy adults (mean age 26.4 years, SD = 5.3; 15 fe-
ale, 10 male) participated. All participants had normal or corrected-to-
ormal vision. They all provided informed written consent and received
ither monetary reimbursement or course credits. Procedures were ap-
roved by the ethical committee of the Department of Psychology at
reie Universität Berlin and were in accordance with the Declaration of
elsinki. 

.2. Stimuli 

The stimulus set consisted of colored natural scene photographs
640 × 480 pixels resolution). Scenes were selected to cover three in-
ependent manipulations. First, each scene contained one of two object
ategories: half of the scenes contained a person (or multiple people),
hereas the other half contained a car (or multiple cars). Second, the
erson or car appeared equally often in each of the quadrants of the
cene. Third, each scene belonged to one of two scene categories: half
f the scenes depicted urban environments, the other half depicted ru-
al environments. For each possible combination of these factors (e.g., a
erson appearing in the bottom left quadrant of a rural scene), 10 unique
cene exemplars were available, yielding 160 scenes in total (2 object
ategories × 4 object locations × 2 scene categories × 10 exemplars).
uring the experiment, the scenes could be presented in their origi-
al orientation or mirrored along their vertical axis (as in Kaiser et al.,
016 ), yielding a total of 320 different scene stimuli. Example scenes
re shown in Fig. 1 a. 

To manipulate scene structure, we either presented the scenes in a
oherent, “intact ” condition or in an incoherent, “jumbled ” condition.
umbled scenes were generated by shuffling the four quadrants of the
2 
mage in a crisscrossed way (i.e., top-left was swapped with bottom-
ight, and top-right was swapped with bottom-left; Fig. 1 b). This manip-
lation solely affected the scene’s structure, but not the people or cars
ontained in the scene: First, as the objects never straddled the boundary
etween quadrants, the objects themselves always remained unaltered.
econd, as the objects appeared equally often in each quadrant before
umbling the scenes, they also appeared equally often in each quadrant
fter jumbling them. 

In total, 640 scene images were used, which covered 320 intact
cenes and 320 jumbled scenes. Additionally, 200 colored texture masks
 Kaiser et al., 2016 ) were used to visually mask the scenes during the
xperiment (see below). 

.3. Experimental paradigm 

Each participant completed four experimental runs of 17 minutes
ach. Each run contained 320 experimental trials, corresponding to 320
nique scene stimuli. Both intact and jumbled scenes were included in
ach run. For half of the participants, the even runs only contained the
riginal scenes, while the odd runs only contained the horizontally mir-
ored scenes; for the other half of the participants, the odd runs only
ontained the original scenes, while the even runs only contained the
orizontally mirrored scenes. Each of the scenes was presented once
uring the run. Trial order was fully randomized for each participant
nd run. 

On each trial, the scene was presented for 83ms, immediately fol-
owed by a visual mask (chosen randomly from the 200 available masks)
or 800ms. Masks were shown to establish a sensitive performance range
or reasonably long presentation times, as they disrupt ongoing visual
rocessing after the offset of the stimulus. All images were shown within
 black rectangle (10deg X 7.5deg visual angle). After an inter-trial in-
erval of 1,617ms, during which a pink fixation dot was shown, the next
rial started. An example trial is illustrated in Fig. 1 c. In addition to the
xperimental trials, each run contained 80 fixation-only trials, during
hich only the fixation dot was displayed. Runs started and ended with
 brief fixation period. 

In two of the four runs, participants were asked to categorize the ob-
ect contained in each scene as either a person or a car ( “object task ”).
n the other two runs, participants were asked to categorize the scene
s either a rural or an urban environment ( “scene task ”). Participants
ere instructed to respond as accurately and quickly as possible, with
n emphasis on accuracy. Button-press responses were recorded dur-
ng the whole inter-trial interval (i.e., until 2,500s after stimulus onset).
he four runs were alternating between the object and scene tasks. The
ask in the first run was counter-balanced between participants. No-
ably, physical stimulation was completely identical across the object
nd scene tasks. 

All stimuli were back-projected onto a translucent screen mounted
o the head end of the scanner bore. Participants viewed the stimulation
hrough a mirror attached to the head coil. Stimulus presentation was
ontrolled using the Psychtoolbox ( Brainard, 1997 ). 

.4. Benchmark localizer paradigm 

In addition to the experimental runs, each participant completed a
enchmark localizer run, which was designed to obtain “benchmark ”
atterns in response to people and cars in isolation ( Peelen et al., 2009 ;
eelen and Kastner, 2011 ). During this run, participants viewed images
f bodies, cars, and scrambled images of bodies and cars. For each of
he three categories, 40 images were used. All images were different
han the ones used in the main experiment. These images were pre-
ented in a block design. Each block lasted 20 seconds and contained 20
mages of one of the three categories, or only a fixation cross. Images
ere presented for 500ms (5deg × 5deg visual angle), separated by a
00ms inter-stimulus interval. The benchmark localizer run consisted
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Fig. 1. Stimuli, paradigm, and behavioral results. a) Stimuli consisted of natural scene images from two categories: urban or rural environments. Each of the scenes 
contained one of two object categories: people or cars. b) During the experiment, these scenes were shown in an unaltered way ( “intact ” condition) or with their 
quadrants intermixed ( “jumbled ” condition). The jumbled scenes were created by shuffling the quadrants in a crisscrossed way, as illustrated. c) Participants viewed 
each scene briefly, followed by a visual mask. In separate runs, they performed two different tasks: They were either asked to indicate whether the scene contained 
a person or a car ( “object task ”) or whether the scene depicted an urban or a rural environment ( “scene task ”). d) In both tasks, scene structure impacted behavioral 
performance: Participants were significantly more accurate and faster for the intact scenes than for the jumbled scenes. Error bars represent standard errors of the 
mean. 
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f a total of 24 blocks (6 blocks for each of the three stimulus cate-
ories, and 6 fixation-only blocks). Four consecutive blocks always con-
ained the four different conditions in random order. Participants were
nstructed to respond to one-back image repetitions (i.e., two identical
mages back-to-back), which happened once during each non-fixation
lock. The benchmark localizer run lasted 8:30 minutes and was com-
leted halfway through the experiment, after two of the four experimen-
al runs. 

.5. fMRI recording and preprocessing 

MRI data was acquired using a 3T Siemens Magnetom Tim Trio Scan-
er equipped with a 12-channel phased-array head coil. T2 ∗ -weighted
radient-echo echo-planar images were collected as functional volumes,
ith the following parameters: TR = 2s, TE = 30ms, 70° flip angle, 3mm3
oxel size, 37 slices, 20% slice gap, 192mm FOV, 64 × 64 matrix size,
nterleaved acquisition, A/P phase encoding, acquisition time 17min
main experiment) / 8:20min (benchmark localizer), whole-brain cover-
ge, ACPC orientation. Additionally, a T1-weighted 3D MPRAGE image
as obtained as an anatomical reference, with the following parame-

ers: TR = 1.9s, TE = 2.52ms, 9° flip angle, 1mm3 voxel size, 176 slices,
0% slice gap, 256mm FOV, ascending acquisition, A/P phase encod-
ng, acquisition time 4:26min, whole-brain coverage. All acquisitions
ontained four initial dummy volumes that were discarded later. 

Preprocessing and hemodynamic response modelling was performed
sing SPM12 ( www.fil.ion.ucl.ac.uk/spm/ ). Functional volumes were
ealigned and coregistered to the anatomical image. Further, transfor-
ation parameters to MNI-305 standard space were obtained using the

segmentation ” routine in SPM12. 
Functional data from each experimental run were modelled in a gen-

ral linear model (GLM) with 16 experimental predictors (2 object cat-
gories × 4 object locations × 2 scene categories). Additionally, we in-
luded the six movement regressors obtained during realignment. Data
rom the benchmark localizer run were modelled in a GLM with three
3 
xperimental predictors (person, car, scrambled) and six movement re-
ressors. 

.6. Region of interest definition 

We restricted fMRI analyses to five regions of interest (ROIs): early
isual cortex (EVC), object-selective lateral occipital cortex (LO), body-
elective extrastriate body area (EBA), scene-selective occipital place
rea (OPA), and scene-selective parahippocampal place area (PPA).
OIs masks were defined using group-level activation masks from

unctional brain atlases: For EVC, we selected all voxels that were
ost probably assigned to primary visual cortex (V1v, V1d) in the
ang et al. (2015) atlas, and for LO, EBA, OPA, and PPA we selected

egion masks from the Julian et al. (2012) atlas. ROIs were defined sep-
rately for each hemisphere. All ROI masks were inverse-normalized
nto individual-participant space using the parameters obtained dur-
ng T1 segmentation. Average voxel counts in individual-participant
pace amounted to 248/271 (EVC; SD = 42/41, left/right), 929/947 (LO;
D = 103/102), 402/443 (EBA; SD = 45/52), 26/47 (OPA; SD = 5/8), and
40/105 (PPA; SD = 14/10). Notably, the LO and EBA ROIs overlapped
o some extent (300/406 voxels overlap, left/right); the inclusion of the
BA allowed us to see whether the results hold in a smaller cortical re-
ion with a narrower category preference for bodies. As we did not have
ny hypothesis related to hemispheric differences, all results for the left-
nd right-hemispheric ROIs were averaged before statistical analysis.
eparate results for the right- and left-hemispheric ROIs are reported in
he Supplementary Information. 

.7. Univariate analysis 

Response magnitudes during the experimental runs were analyzed
eparately for each ROI. We first averaged beta values across the two
bject-task and scene-task runs, respectively. We then averaged beta
alues across object categories, object locations, and scene categories.

http://www.fil.ion.ucl.ac.uk/spm/
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his way, we obtained response magnitudes for four conditions: (1) re-
ponses to intact scenes in the object task, (2) responses to jumbled
cenes in the object task, (3) responses to intact scenes in the scene task,
nd (4) responses to jumbled scenes in the scene task. These four con-
itions allowed us to separately estimate the effects of task (object task
ersus scene task) and scene structure (intact versus jumbled) on neural
esponses across the five ROIs. For a univariate analysis of category-
pecific responses across the two tasks, see the Supplementary Informa-
ion. 

.8. Multivariate pattern analysis 

Multivariate pattern analysis (MVPA) was carried out in CoS-
oMVPA ( Oosterhof et al., 2016 ). Our MVPA approach closely followed

imilar fMRI studies that investigated the representation of objects in
atural scenes ( Peelen et al., 2009 ; Peelen and Kastner, 2011 ). We first
omputed a one-sample t-contrasts for every condition against baseline
i.e., against the fixation trials). In the benchmark localizer run, there
ere 2 such t-contrasts (one for people versus baseline, and one for cars
ersus baseline). In the object task and scene task runs, there were 16
-contrasts each (one contrast for each experimental condition against
aseline, reflecting 2 object categories × 4 object locations × 2 scene cat-
gories). For each of the three tasks (benchmark localizer, object task,
nd scene task), the resulting t-values were normalized for each voxel by
ubtracting the average t-value across conditions. For each ROI, multi-
oxel response patterns were constructed by concatenating the t-values
cross all voxels belonging to the ROI. 

To obtain an index of object discriminability (i.e., how discriminable
eople and cars in scenes are based on multi-voxel response patterns),
e performed a correlation-based MVPA. The goal of this analysis was

o quantify how “person-like ” or “car-like ” the cortical representation
f each of the scenes was, thereby isolating the amount of object cat-
gory information in visual cortex (note that each of the scenes either
ontained a person or a car). To this end, we correlated multi-voxel re-
ponse patterns evoked by people and cars in isolation (from the bench-
ark localizer) with response patterns evoked by people and cars con-

ained in a scene (from one of the experimental tasks). These correla-
ions were Fisher-transformed. To quantify object discriminability, we
hen subtracted the correlations between different categories (e.g., per-
on in isolation and car within a scene) from correlations between the
ame categories (e.g., person in isolation and person within a scene).
his yielded an index of category-discriminability, with values greater
han zero indicating that the two categories are represented differently
 Haxby et al., 2001 ). Results for different analysis routines (using Spear-
an correlations and no mean-removal across conditions) can be found

n the Supplementary Information. 
Before performing this analysis, response patterns in the main ex-

eriment were averaged across object locations and scene categories.
his way, we obtained an index of object category-discriminability for
our separate conditions: (1) category-discriminability for intact scenes
n the object task, (2) category-discriminability for jumbled scenes in the
bject task, (3) category-discriminability for intact scenes in the scene
ask, and (4) category-discriminability for jumbled scenes in the scene
ask. The resulting four conditions allowed us to estimate the effects of
cene structure on the quality of object representations in visual cortex,
oth when the objects were task-relevant and task-irrelevant. 

.9. Statistical testing 

To compare behavioral performance, univariate responses, and
ulti-voxel pattern information across conditions, we used repeated-
easures ANOVAs and paired-sample t-tests. We report partial eta-

quared ( 𝜂p 
2 , for F-tests) and Cohen’s d (for t-tests) as measures of effect

ize. Descriptive statistics (means and standard errors) are reported in
he Supplementary Information. 
4 
.10. Data availability 

Data are publicly available on OSF (doi.org/10.17605/osf.io/gs2t5).
ther materials are available from the corresponding author upon re-
uest. 

. Results 

.1. Coherent scene structure facilitates the perception of objects within 

cenes 

We first analyzed participants’ behavioral performance in the object
nd scene tasks, separately for the intact and jumbled scenes ( Fig. 1 d).
n the object task, participants’ categorization (person versus car) of ob-
ects within the intact scenes was more accurate, t(24) = 8.28, p < .001,
 = 1.61, and faster, t(24) = 3.26, p = .0033, d = 0.65, compared to the jum-
led scenes. In the scene task, participants’ categorization (rural ver-
us urban) of the intact scenes was more accurate, t(24) = 4.77, p < .001,
 = 0.95, and faster, t(24) = 3.26, p = .0033, d = 0.65, compared to the jum-
led scenes. These results are in line with classical findings on ob-
ect and scene categorization in jumbling paradigms ( Biederman, 1972 ;
iederman et al., 1973 , 1974 ), showcasing that scene jumbling has a
rofound impact on perception. 

Further, when directly comparing the two tasks, we did not find
ifferences in accuracy, F(1,24) = 3.13, p = .090, or response times,
(1,24) = 0.04, p = .84. Any differences in neural responses are therefore
nlikely to reflect differences in task difficulty, and therefore attentional
ngagement, between the two tasks. 

Together, these results demonstrate that jumbling similarly impairs
he perception of the scene and the objects contained in it, demonstrat-
ng a cross-facilitation between scene and object vision that can be ob-
erved on the behavioral level. 

.2. Scene structure impacts univariate responses across object- and 

cene-selective cortex 

To quantify the effects of scene jumbling on the neural level, we first
an univariate analyses. In these analyses, we compared fMRI response
agnitudes across the intact and jumbled scenes and across the two

asks ( Fig. 2 ). To do so, we performed a 2 × 2 repeated measures ANOVA
ith the factors scene structure (intact versus jumbled) and task (object

ask versus scene task). The analysis was performed separately and in
urn for each of the five ROIs: EVC, LO, EBA, OPA, and PPA. Detailed
esults for these analyses can be found in Table 1 . 

In EVC, responses were comparable across all conditions, all F < 1.25,
 > .27, 𝜂p 

2 < 0.06, suggesting that EVC is not sensitive to typical scene
omposition. 

In all extrastriate ROIs, we found a main effect of scene structure,
hich indicated stronger responses to intact than to jumbled scenes,
ll F(1,24) > 7.95, p < .010, 𝜂p 

2 > 0.24. Comparing this effect across re-
ions, we found that it was more pronounced in the scene-selective
egions, OFA versus LO/EBA, both F(1,24) > 31.17, p < .001, 𝜂p 

2 > 0.56,
nd PPA versus LO/EBA, both F(1,24) > 35.54, p < .001, 𝜂p 

2 > 0.59. This
nding confirms our previous fMRI results, which revealed particularly
trong effects of scene jumbling in scene-selective areas of visual cortex
 Kaiser et al., 2020a ). 

In all ROIs, scene structure affected univariate responses similarly
cross the two tasks, as indexed by no significant interaction effects, all
 < 2.46, p > .12, 𝜂p 

2 < 0.10. This pattern of results mirrors the pattern ob-
erved in behavior, where scene jumbling produced comparable effects
n the object and scene tasks. 

PPA was the only region that additionally showed an effect of task,
(1,24) = 6.51, p = .017, 𝜂p 

2 = 0.21, with stronger responses in the scene
ask compared to the object task. This suggests an increased importance
f computations in higher-level scene-selective cortex when scene at-
ributes were behaviorally relevant. 
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Fig. 2. Univariate results. In all extrastriate regions, but not in EVC, we found a significant main effect of scene structure: Intact scenes led to significantly stronger 
responses than jumbled scenes. This effect was comparable across the two tasks and most pronounced in scene-selective ROIs. PPA was the only region that additionally 
showed a modulation by task, with significantly stronger responses when participants were categorizing the scenes, compared to when they were categorizing the 
objects within them. For illustration purposes, ROI masks are shown on the right hemisphere of a standard-space template using MRIcroGL ( Li et al., 2016 ); the 
displayed results are averaged across ROIs in both hemispheres. Error bars represent standard errors of the mean. 

Table 1 

Univariate responses, analyzed in a 2 × 2 repeated measures ANOVA with the factors scene structure (intact 
versus jumbled) and task (object task versus scene task). Significant effects are highlighted in bold. 

ROI Main effect scene structure Main effect task Interaction effect structu re × Task 

EVC F(1,24) < 0.01, p = .98, 𝜂p 
2 < 0.01 F(1,24) = 1.25, p = .28, 𝜂p 

2 = 0.05 F(1,24) = 0.09, p = .76, 𝜂p 
2 < 0.01 

LO F(1,24) = 9.74, p = .005, 𝜼p 
2 = 0.29 F(1,24) = 0.04, p = .85, 𝜂p 

2 < 0.01 F(1,24) = 0.97, p = .33, 𝜂p 
2 = 0.04 

EBA F(1,24) = 7.95, p = .009, 𝜼p 
2 = 0.25 F(1,24) = 0.21, p = .65, 𝜂p 

2 < 0.01 F(1,24) = 2.46, p = .13, 𝜂p 
2 = 0.09 

OPA F(1,24) = 27.18, p < .001, 𝜼p 
2 = 0.53 F(1,24) = 0.09, p = .77, 𝜂p 

2 < 0.01 F(1,24) = 0.97, p = .34, 𝜂p 
2 = 0.04 

PPA F(1,24) = 48.02, p < .001, 𝜼p 
2 = 0.67 F(1,24) = 6.51, p = .017, 𝜼p 

2 = 0.21 F(1,24) = 0.51, p = .48, 𝜂p 
2 = 0.02 
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Having established that scene structure enhanced cortical responses
cross object- and scene-selective cortex, and similarly for both tasks, we
ext asked how scene structure contributes to the extraction of object
nformation – both when the objects are behaviorally relevant and when
hey are not. 

.2. Coherent scene structure enhances task-relevant object information in 

ulti-voxel response patterns 

To understand how the coherent spatial structure of the scene im-
acts cortical object processing, we performed a correlation-based mul-
ivariate pattern analysis (MVPA). In this analysis, we correlated the
ulti-voxel response patterns evoked by objects embedded in scenes

from the object and scene tasks) with the patterns evoked by the ob-
ects in isolation (from the benchmark localizer) ( Fig. 3 a). This approach
llowed us to quantify how “person-like ” or “car-like ” the cortical rep-
esentation of each of the scene conditions was, thereby isolating the
mount of object information present in visual cortex (note that each
f the scenes either contained a person or a car). When object informa-
ion is operationalized in this way, it can be separated from differences
n the scene context (as in the benchmark localizer no scene context is
resented) and task-related differences (as in the benchmark localizer
articipants perform a different task). 

To quantify object information, we computed a correlation measure
y subtracting correlations between different categories (e.g., person in
solation and car within a scene) from correlations between the same
ategories (e.g., person in isolation and person within a scene) ( Fig. 3 a).
his measure was computed separately for each of the object and scene
asks, the intact and jumbled scenes, and all ROIs. 
5 
To test whether multi-voxel response patterns contained any infor-
ation at all about the object contained in the scenes, we first av-

raged the correlation measure across all conditions. We then tested
hether the average category information was significantly different

rom zero, separately for each ROI. As expected, people and cars could
e reliably discriminated from response patterns in the object-selective
O, t(24) = 7.56, p < .001, d = 1.51, and body-selective EBA, t(24) = 8.00,
 < .001, d = 1.60, but not from response patterns in EVC, t(24) = 0.80,
 = .43, d = 0.18, or scene-selective OPA, t(24) = 0.49, p = .63, d = 0.10, and
PA, t(24) = 0.70, p = .49, d = 0.14. 

Given that we only found robust object information in LO and EBA,
e only performed further analyses for these two regions ( Fig. 3 b). Data
ere again analyzed in a 2 × 2 ANOVA with factors scene structure

intact vs jumbled) and task (object task vs scene task), separately for
O and EBA. 

When analyzing the amount of object information contained in LO
esponse patterns, we found a significant interaction between task and
cene structure, F(1,24) = 5.63, p = .026, 𝜂p 

2 = 0.19: When participants
erformed the object task, object information in LO was more pro-
ounced for objects embedded in intact compared to jumbled scenes,
(24) = 2.65, p = .014, d = 0.53. This effect was absent when participants
erformed the scene task, t(24) = 1.22, p = .24, d = 0.24. A similar inter-
ction effect was found in the EBA, F(1,24) = 5.19, p = .032, 𝜂p 

2 = 0.18:
bject information was again enhanced for intact scenes during the ob-

ect task, t(24) = 2.30, p = .030, d = 0.46, but not during the scene task,
(24) = 0.92, p = .37, d = 0.18. These results demonstrate that coherent
cene structure indeed enhances object representations in visual cor-
ex. However, this enhancement depends on the behavioral relevance
f the object: When scene category, rather than object category, was
ask-relevant, no such enhancement was observed. 
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Fig. 3. Correlation MVPA logic and results. a) To measure object discriminability, we extracted multi-voxel response patterns for each ROI, separately for objects 
in isolation (from the benchmark localizer) and objects appearing within the scenes (from the main experiment). We then computed within- and between-category 
correlations. By subtracting the between-category from the within-category correlations, we obtained an index of category information ( Δr). b) In both LO and EBA, 
category information was significantly higher for objects that were embedded in intact scenes than for objects embedded in jumbled scenes. However, this was only 
true when participants performed the object task; when they performed the scene task, no significant difference in object category information was observed when 
comparing intact and jumbled scenes. For illustration purposes, ROI masks are shown on the right hemisphere of a standard-space template using MRIcroGL ( Li et al., 
2016 ); the displayed results are averaged across ROIs in both hemispheres. Error bars represent standard errors of the mean. 
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. Discussion 

.1. Coherent scene structure facilitates task-relevant object processing 

In this study, we shed light on neural object processing in situa-
ions where the object is either embedded within a coherent, intact
cene or an incoherent, jumbled scene. Consistent with classical stud-
es ( Biederman, 1972 ; Biederman et al., 1973 , 1974 ), our participants
ere more accurate and faster in perceiving intact, compared to jum-
led scenes, both when performing an object categorization task and a
cene categorization task. Our univariate findings are consistent with
revious fMRI work ( Kaiser et al., 2020a ): We replicate the finding that
ntact scenes yield stronger neural responses than jumbled scenes, across
igh-level visual cortex and prominently in scene-selective regions. This
uggests a widespread sensitivity to typical scene structure in the visual
ystem. Importantly, our current results show that scene structure also
atters when it comes to the neural representation of objects within the

cene: When analyzing the amount of object information contained in
ulti-voxel response patterns in object and body-selective visual cortex,
e found an enhancement of object information when the objects were

mbedded within intact scenes, compared to jumbled scenes. Critically,
his enhancement only emerged in the object categorization task, sug-
esting that coherent scene structure facilitates the extraction of object
nformation only when the objects are relevant for current behavioral
oals. 

.2. Interactions between object and scene processing are mediated by 

cene structure 

Our findings support the view that the scene and object processing
athways are not functionally separate, but that scene information can
id the extraction of object information ( Brandmann and Peelen, 2017 ).
heories of contextual facilitation propose that scene structure is an-
lyzed rapidly, potentially based on coarse low-spatial frequency in-
ormation ( Bar, 2004 ; Bar et al., 2006 ). This idea is consistent with
he observation that an initial representation of scene meaning – the
cene’s “gist ” – can be extracted from just a single glance ( Greene and
liva, 2009 ; Oliva and Torralba, 2006 , 2007 ). Contextual facilitation
6 
heories argue that detailed object analysis is facilitated by this more
eadily available information about scene gist ( Bar, 2004 ; Hochstein and
hissar, 2002 ). Informing object analysis through the analysis of coarse
cene properties may be particularly useful when perception is chal-
enged by the presence of many distracter items and limited visual expo-
ure. Probing perception with such a challenging task, our study shows
hat the cross-facilitation between object and scene processing is me-
iated by the scene’s structural coherence: When the analysis of scene
ist is disrupted by jumbling the scene, contextual information cannot
mplify object processing in the same way as it can for intact scenes. 

The enhanced extraction of object information from the intact scenes
uggests that useful information about scene gist is extracted less effi-
iently from the jumbled scenes. Indeed, the rapid analysis of scene gist
epends on our priors about typical scene composition ( Csathó et al.,
015 ; Greene et al., 2015 ). Neuroimaging studies suggest that the cor-
ical scene processing network is tuned to these priors ( Kaiser et al.,
020a ; Torralbo et al., 2013 ), and that the early extraction of properties
ike the scene’s basic-level category depends on the structural coherence
f the scene ( Kaiser et al., 2020b ). Jumbling is a strong manipulation in
he sense that is disrupts multiple aspects of the scene’s spatial coherence
t the same time: it disrupts the spatial positioning of individual pieces
f information in visual space ( Kaiser and Cichy, 2018 ; Mannion, 2015 ),
he positioning of objects relative to each other ( Kaiser et al., 2019 ;
aiser and Peelen, 2018 ), as well as the typical geometry of the scene
 Dillon et al., 2018 ; Spelke and Lee, 2012 ). Future research is needed to
isentangle these different factors, and how much they each contribute
o the facilitation of object representation. 

Alternatively, one could argue that the jumbling manipulation gen-
rates a more general “artificiality ” in the stimuli (through the salient
orders between quadrants of the jumbled images) that puts additional
train on the visual system. Based on this assertion, one would predict
ower responses for jumbled scenes. In previous studies ( Kaiser et al.,
020a , 2020b ), we have shown that strong effects of scene jumbling are
lso obtained when introducing similar artificial discontinuities to the
ypical scenes, suggesting that the degree of image artificiality intro-
uced by the jumbling manipulation alone cannot explain the results. 

However, although jumbling is a strong manipulation that conflates
ultiple factors of scene structure, it preserves critical characteristics of



D. Kaiser, G. Häberle and R.M. Cichy NeuroImage 240 (2021) 118365 

t  

t  

s  

o  

b  

r  

v  

o  

s  

a

4

 

c  

t  

c  

c  

w  

s  

i  

(  

r  

u  

s  

e  

v  

a  

H  

t  

a  

d  

b  

b  

f  

p  

p  

K  

t  

i
 

o  

s  

t  

a  

(  

I  

a  

t  

i  

p  

t  

q  

w  

s  

h  

j  

v  

t  

t  

o  

b  

n  

H  

r  

b  

i  

c

4

 

p  

i  

a  

g  

p  

r

C

 

t  

–  

P  

t  

i  

q

A

 

D  

(  

a  

i  

S

S

 

t

R

B
B  

 

B  

B
B  

B  

B  

B  

B
C  

C  

 

C  

D  

G  

 

G  
he objects: First, the objects remain completely unaltered across the in-
act and jumbled scenes. Second, the objects’ absolute positions in visual
pace were matched across the intact and jumbled scenes. Finally, each
bject’s local visual context remains constant across the intact and jum-
led scenes. These properties allow us to attribute differences in object
epresentations to facilitates effects from cortical scene analysis: If the
isual brain would not take global scene context into account and would
nly analyze the objects in their local visual surroundings, our paradigm
hould yield comparable results for structurally coherent, intact scenes
nd incoherent, jumbled scenes. 

.2. Attention mediates contextual facilitation effects 

Unlike task-relevant objects, task-irrelevant objects were not pro-
essed differently as a function of scene coherence. This finding shows
hat contextual facilitation of object processing is not an automatic pro-
ess. On the contrary, interactions between the object and scene pro-
essing systems seem to be mediated by attention. This observation fits
ell with previous results from studies on object detection in natural

cenes. Compared to task-relevant objects, multi-voxel response patterns
n visual cortex contain far less information about unattended objects
 Peelen et al., 2009 ; Peelen and Kastner, 2011 ). Further, MEG decoding
esults suggest strong differences in the representation of attended and
nattended object categories ( Kaiser et al., 2016 ): Particularly at early
tages of processing, within the first 200ms after stimulus onset, the cat-
gory of unattended objects is represented less accurately. Beyond the
isual brain, differences in task demands also affect more widespread
ctivations across the cortex ( Cukur et al., 2013 ; Harel et al., 2014 ;
ebart et al., 2018 ; Nastase et al., 2017 ), potentially causing substantial

ask-related changes in processing dynamics. One such change may be
n alteration of the crosstalk between representations in different visual
omains. Our data indeed suggests that the exchange of information
etween the object and scene processing pathways is not mandatory,
ut rather constitutes an adaptive mechanism for improving task per-
ormance. Under this view, interactions between the scene and object
rocessing pathways may be specifically “switched on ” when objects are
art of current attentional templates ( Battistoni et al., 2017 ; Peelen and
astner, 2011 ). The specific mechanism underlying this adaptive con-

rol of the crosstalk between scene and object processing needs further
nvestigation. 

How does the apparent importance of attention tie in with previ-
us studies that reported a cross-facilitation between the object and
cene-processing systems ( Brandmann and Peelen, 2017 , 2019 )? While
hese studies did not use object categorization tasks, they still explicitly
sked participants to attend to the objects appearing within the scene
either by asking them to memorize them or through one-back tasks).
n our scene categorization task, the situation was entirely different,
s the objects were completely irrelevant for solving the task. In fact,
his orthogonality of object and scene category in our design may have
ntroduced an active suppression of object information when partici-
ants performed the scene categorization task. Previous studies suggest
hat task-irrelevant distracter objects can be suppressed effectively and
uickly ( Seidl et al., 2012 ; Hickey et al., 2019 ). During the scene task,
e indeed found numerically better object representations for jumbled

cenes. This tentative reversal of the facilitation effect could potentially
int at a more efficient suppression of object information when the ob-
ect is embedded in a structurally coherent scene. However, as this re-
ersal is not statistically significant in our data and is somewhat suscep-
ible to changes in analysis choices (see Supplementary Information),
his assertion is largely speculative at this point. As another interesting
bservation, object information for the jumbled scenes was compara-
le between the object and scene tasks, suggesting that attention can-
ot as efficiently amplify object information when the scene is jumbled.
owever, some caution needs to be applied when directly comparing

epresentations across the two tasks (rather than comparing differences
etween conditions), because different task-specific demand character-
7 
stics and attentional requirements complicate the interpretation of such
omparisons. 

.3. Conclusion 

In conclusion, our results show that the object and scene processing
athways can interact to facilitate the processing of task-relevant object
nformation embedded in coherent scenes. However, such interactions
re not mandatory. They rather seem to be guided by current behavioral
oals. Our findings therefore suggest that the visual brain adaptively ex-
loits coherent scene context to resolve object perception in challenging
eal-world situations. 

Data availability : Data are publicly available on OSF (doi.org/ 
10.17605/osf.io/gs2t5). Other materials are available from the 
corresponding author upon request. 
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