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Abstract 

Imagine you are asked to draw a typical bedroom, what would you put on paper? Your 

choice of objects is likely to depend on visual occurrence statistics (i.e., the objects 

present in previously encountered bedrooms) and semantic relations between objects 

and scenes (i.e., the semantic relationship between the bedroom and its constituent 

objects). To investigate how these two factors contribute to the composition of typical 

scene drawings, we analyzed 1,192 drawings of six indoor scene categories, obtained 

from 303 participants. For each object featured in the drawings, we estimated its visual 

occurrence frequency from the ADE20K dataset of annotated scene images, and its 

semantic relatedness to the scene concept from a word2vec language processing model. 

Across all scenes of a given category, generalized linear models revealed that visual 

and conceptual factors both predicted the likelihood of an object featuring in the scene 

drawings, with a combined model outperforming both single-factor models. We further 

computed the visual and semantic specificity of objects for a given scene, that is, how 

diagnostic an object is for the scene. Object specificity offered only weak predictive 

power when predicting the selection of objects, yet even infrequently drawn objects 

remained diagnostic of their scenes. Taken together, we show that visual and conceptual 

factors jointly shape the composition of typical scene drawings. By releasing a large 

dataset of typical scene drawings alongside this work, we further provide a starting 

point for future studies exploring other critical properties of human drawings.  
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Introduction 

 

Drawing is a fundamental form of human communication. Humans have employed 

drawings to communicate ideas, express emotions and share experiences for at least 

40,000 years (Aubert et al., 2014; Hoffmann et al., 2018). In modern society, drawings 

continue to serve diverse functions. For instance, designers use drawings to visualize 

ideas (Goldschmidt., 2014), artists use drawings to externalize imagination (Fish & 

Scrivener., 1990), clinicians use drawings to diagnose and classify neurological 

disorders (Agrell., 1998; Wechsler., 2009). During many everyday activities, people 

draw to alleviate boredom or to enhance concentration (Andrade., 2010). Contrasting 

this prevalence of drawings, we know relatively little about how people decide which 

elements to include when composing a drawing. This question is particularly evident 

when drawings of complex scenes are considered: which objects do people draw to 

convey a certain scene, say a living room? A better understanding of the composition 

of such drawings may shed a new light on how people translate perceptual and memory 

representations into visible outputs. 

 

Such insights are also crucial for researchers in cognitive science and neuroscience that 

use drawing as a tool to characterize the nature of internal representations (Engeser et 

al., 2025; Fan et al., 2023; Roberts & Wammes, 2021). For instance, in development 

research, drawings are used to investigate the developmental trajectory of visual object 

representations (Karmiloff-Smith., 1990; Long et al., 2019; Long et al., 2024). In 

memory research, successes and failures in memory can be captured by how well 

human drawings during recall align with or deviate from the studied materials (Metzger., 

1936; Bainbridge et al., 2019; Bainbridge & Baker., 2020; Fan et al., 2023). Further, in 

perception research, drawings provide descriptions of participants’ world models, 

which can in turn be used to predict perception (Engeser et al., 2025; Morgan et al., 

2019; Wang et al., 2024, 2025). A better understanding of how people compose their 

drawings could inform the potential and limitations of studies using drawing as a 

methodological tool.  

 

To understand how people compose drawings of natural scenes, we analyzed more than 

1,000 drawings of six scene categories from more than 300 participants. All participants 

were asked to draw a typical instance of a scene category (e.g., a typical living room), 

after briefly thinking about the scene contents and then drawing within a relatively 

liberal time constraint (Wang et al., 2024, 2025). The full set of scene drawings, the 

Room Drawings Dataset, is released alongside this publication (see Materials and 

Methods), providing a rich benchmark dataset of evaluating diverse aspects of drawing 

composition in future studies. 

 

In the current study, we used the dataset to ask how well the object composition in 

drawings from each scene category could be predicted by two complementary factors: 

(i) visual occurrence statistics, that is, the frequency with which the individual objects 

are encountered in a given scene category in the real world, and (ii) semantic similarity, 
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that is, the semantic relatedness between the scene concept and the individual object 

concepts. 

 

First, people’s decisions about which objects are drawn for a given category should 

predict on how frequently the objects are commonly found in scenes of that category. 

In bathrooms, we much more often see a sink than a table, so we should draw sinks 

more often than tables. Most scenes are reliably associated with such prominent scene- 

and space-defining objects (Bar, 2004; Bar & Aminoff, 2003; Oliva & Torralba, 2007; 

Võ et al., 2019). Here, we quantified such visual occurrence statistics by assessing how 

frequently individual objects appear within images real-world scene categories. 

Specifically, we used the annotated ADE20K scene database (Zhou et al., 2017; Zhou 

et al., 2018) and computed for a set of scene categories how often individual objects 

featured in images of that category (e.g., how often is a sink found in images of 

bathrooms).  

 

Second, the object composition of a drawing may not just be shaped by visual 

occurrence statistics. It may also depend on information stored in conceptual 

representations, which do not necessarily mirror unfiltered visual experience. During 

drawing, people need to recall relevant objects from long-term memory. Such long-

term memory for real-world objects can be stored in structured conceptual spaces 

(Brady et al., 2008; Konkle et al., 2010), and retrieval from such conceptual spaces may 

depend on the semantic similarity between a scene concept and the candidate object 

concepts. Here, we quantified such semantic similarity by assessing the similarity of 

object and scene concepts in a large language model (word2vec; Mikolov et al., 2013). 

Specifically, we computed the cosine similarity between a set of scene category 

concepts and individual object concepts in this model (e.g., how similar is the concept 

“sink” to the concept “bathroom”).   

 

These two predictors enabled us to test how visual occurrence statistics and semantic 

relatedness contribute to the object composition in a set of more than 1,000 scene 

drawings spanning six categories. 

 

Materials and methods 

 

Participants 

 

A total of 303 participants (26.14±4.78 years±SD, 100/201/2 male/female/other) 

provided scene drawings. Of these, 101 participants (25.20 ±4.07 years±SD, 24/77 

male/female) were tested online in the UK (recruited at the University of York), and 

202 participants (26.62±5.04 years, 76/124/2 male/female/other) were tested in a 

laboratory setting in Germany (recruited at Freie Universität Berlin and Justus-Liebig-

Universität Giessen). Procedures were approved by the ethics committees of the 

Department of Psychology, University of York, the Department of Education and 

Psychology, Freie Universität Berlin, and the ethics committee of the Justus-Liebig-
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Universität Gießen, respectively, and adhered to the Declaration of Helsinki. 

 

Drawing sessions 

 

The drawings used here were produced in drawing sessions across multiple experiments, 

including two published studies (Wang et al., 2024, 2025) and other still unpublished 

work. Drawing sessions were conducted either online or in-person in a laboratory 

setting. Online sessions were conducted via Skype. Here, participants provided their 

drawings using a pencil, eraser, and ruler on A4 paper. For each drawing, participants 

had 1 minute to plan and 3 minutes 30 seconds to complete the drawing. Participants 

drew typical versions of three scene categories (bedroom, kitchen, living room). In the 

lab-based drawings sessions, participants provided their drawings using an Apple 

Pencil on an Apple iPad with the Sketchbook App. Each participant was given 30 

seconds to plan and 4 minutes to complete each drawing. A group of participants (N=85) 

drew six typical scene categories (bathroom, bedroom, café, kitchen, living room, 

office), while another group (N=115) drew four categories (bathroom, bedroom, 

kitchen, living room). In all sessions, participants were instructed to draw the most 

typical representation of each room (Figure 1), rather than their own rooms or an 

aesthetically appealing version of the room. Participants were instructed to draw into a 

pre-defined perspective grid, which they drew themselves according to the 

experimenter’s instructions (online sessions) or which was present on the iPad screen 

from the outset (lab-based sessions). Further details on the drawing sessions are 

available in our previous studies (Wang et al., 2024, 2025). 

 

Object annotation 

 

For each drawing, all depicted objects were manually annotated. Overall, typical 

bathroom drawings consisted of an average of 6.3 different objects (SD = 1.6, range = 

[4, 12]; multiple instances of the same object were not counted), with the three most 

frequent objects sink (100%), toilet (96%), and shower (86%). Bedrooms consisted of 

an average of 8.3 objects (SD=2.1, range = [4, 13]), with the three most frequent objects 

bed (100%), pillow (93%), and window (74%). Cafés consisted of an average of 7.4 

objects (SD=3.1, range= [3, 19]), with the three most frequent objects table (99%), chair 

(97%), and counter (86%). Kitchens consisted of an average of 8.7 objects (SD= 3.4, 

range = [4,17]), with the three most frequent objects cupboard (99%), stove (98%), and 

sink (90%). Living rooms consisted of an average of 7.8 objects (SD=2.5, range = 

[4,14]), with the three most frequent objects sofa (100%), television (89%) and 

television stand (77%). Offices consisted of an average of 7.3 objects (SD =3.1, range 

= [4, 15]), with the three most frequent objects table (100%), chair (94%), and window 

(75%). Full annotation details are provided in the supplementary materials. From these 

annotations, we computed the occurrence frequency of each object within its respective 

scene category. 
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Quantifying visual occurrence statistics and semantic relatedness 

 

To quantify visual occurrence statistics across the exemplars of each scene category, we 

determined the occurrence frequencies of the annotated objects in each scene category 

by referencing the ADE20K dataset (Zhou et al., 2017; Zhou et al., 2018). Specifically, 

we queried the database for each object annotated in the drawings and the 

corresponding scene category and calculated each object’s frequency of occurrence 

across all the scenes for each category. To quantify semantic relatedness between object 

and scene concepts, we computed the similarity between the word representing each 

object annotated in the drawings (e.g., “shower” in English, “Dusche” in German) and 

the corresponding scene concepts (e.g., “bathroom” in English, “Badezimmer” in 

German) using a word2vec model. We used word vectors pre-trained on German for 

the German participants and on English for the UK participants, and supplied words in 

each group’s native language. Both training resources came from the Common Crawl 

and Wikipedia corpora using fastText (Grave et al., 2018). By calculating the cosine 

similarity between the object and scene concept, we quantified how strongly each object 

is semantically related to the scene category it appeared in.  

 

Modelling object drawing frequencies 

 

To examine the relationship between object drawing frequency, visual occurrence 

statistics, and semantic relatedness, we fitted generalized linear models to predict object 

drawing frequencies using (i) occurrence statistics only, (ii) semantic relatedness only, 

and (iii) both predictors together. As the dependent variable represented a bounded 

proportion (i.e., % of drawings that contained the object), we chose a Beta-binomial 

regression approach (i.e., a generalized linear model with a Beta function as the link 

function, Ferrasi & Cribari-Neto, 2004). To assess the overall effect of visual 

experience and conceptual knowledge on object occurrence frequency across all 

categories, we fitted a generalized linear mixed-effects model that included category as 

a random effect as well as visual experience and/or conceptual knowledge as fixed 

effects. We then assessed whether a combined model better explained drawing 

frequencies better than occurrence statistics or semantic relatedness along. To assess 

the stability of the results across categories, we further fitted the same model 

individually for every scene category. 

 

We explored the composition of the drawings further by asking how the specificity of 

an object for a given scene category (e.g., a stove is highly specific for a kitchen, as it 

almost exclusively appears there, but a window is not) predicts drawing frequency. To 

quantify specificity, we calculated (i) the scene-specificity of an object in visual 

occurrence statistics, defined as the normalized difference between an object's 

frequency in its corresponding scene category and its average frequency across the 

other scene categories, the (ii) the scene-specificity of an object in semantic relatedness, 

defined as the normalized difference between an object concept's cosine similarity to 

its corresponding scene concept and its average cosine similarity to the other scene 
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concepts in the language model. Specificity was computed using the following formula: 

𝑆𝑝𝑒𝑐𝐹/𝑆 (𝑜|𝑠) =
𝐹/𝑆(𝑜, 𝑠) − 𝐹/𝑆 (𝑜, −𝑠)

𝐹/𝑆(𝑜, 𝑠) + 𝐹/𝑆 (𝑜, −𝑠)
 

F: object frequency, S: semantic relatedness, o: object, s: corresponding scene, -s: the 

other scenes.  

 

Then, we fitted mixed effects models to predict object frequency in drawings from 

visual and semantic specificity. We further asked whether infrequently drawn objects 

are still diagnostic for their respective scene category (and if so, to which extent) or 

whether they mainly constitute generic “filler” objects that are equally appropriate for 

our range of categories (like windows or bins). To this end, we ordered all objects by 

their drawing frequency and binned them into six ranges: objects featured in 0-10%, 

10-20%, 20-30%, 30-40%, 40-70%, or 70-100% of scenes. We varied bin sizes across 

the frequency range as there were more objects that appeared relatively infrequently. 

We then assessed whether objects across frequency bins were consistently diagnostic 

for the scene category. 

 

The ADE20K annotations analysis and the word2vec analysis were conducted in 

Python. All further statistical analyses were conducted in R. 

 

Data, material and code availability 

 

Data, and code are accessible on the Open Science Framework (OSF), available at     

https://osf.io/p2fa6/. We further release all drawings, together with participant 

information and annotations, in the Room Drawings Dataset, available at: 

https://osf.io/byu24/. 

 

 

Figure 1. Overview of the drawing sessions and annotation procedure. (A) Participants 

draw typical versions of indoor scene categories on paper or an iPad. (B) An example 

drawing of a living room. Note that a common perspective was enforced by a 

perspective grid shown to the participants from the outset. (C) We manually annotated 

all individual objects in the drawings. Each object instance was only counted once (i.e., 

objects were coded as present or absent). 
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Results 

 

We first visualized how often different objects were drawn for each scene category. We 

generated word clouds (Heimerl et al., 2014) for each category, in which font size 

reflects how frequently each object was drawn (Figure 2). These descriptive data show 

that each scene featured prominent and diagnostic objects that were drawn across many 

instances of the scene (e.g., a bed in the bedroom).  

 

 

Figure 2. Word clouds representing the drawing frequency of objects across scene 

categories. The size of the words represents how frequently the object was featured in 

the drawings.  

 

To evaluate how visual occurrence statistics and semantic relatedness contribute to the 

composition of scene drawings, we fitted three mixed-effects models that predicted 

object drawing frequency from either (i) only visual occurrence statistics, (ii) only 

semantic relatedness, or (iii) both factors combined. Each model additionally featured 

category as a random effect. Model estimates and fit indices are reported in Table 1 

(“Full Model”). A comparison of Akaike Information Criterion (AIC) and Bayesian 

Information Criteria (BIC) revealed that the combined model provided the best fit (AIC 

= -679.50, BIC = -659.98), with a conditional R2 of 0.81. These results suggest that 

visual occurrence statistics are a good predictor of object drawing frequencies in scene 

drawings. Yet, semantic similarity between scene and object concepts explains 

additional variance in the drawing composition that is not captured by visual statistics.  
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Table 1. Regression weights and goodness-of-fit statistics for the generalized linear 

models. 

 

Scene 

Category 

Visual Semantic AIC BIC R2 

Full Model 4.78*** / -645.65 -630.04 0.77 

 / 6.59*** -436.85 -421.24 0.54 

 4.33*** 3.21*** -679.50 -659.98 0.81 

Bathroom 4.39*** 5.99*** -92.89 -86.12 0.67 

Bedroom 4.56*** 2.10* -156.11 -146.39 0.64 

Café  6.03*** 10.37*** -56.86 -50.52 0.65 

Kitchen 4.36*** 2.44* -138.78 -129.10 0.61 

Living room 3.63*** 3.30*** -158.63 -148.86 0.51 

Office 6.69*** 2.69* -89.46 -82.91 0.74 

 

 

Figure 3. Visualization of generalized linear model fits when predicting object drawing 

frequencies from visual occurrence statistics and semantic relatedness, separately for 

the six categories. In all categories, both predictors yielded coefficients significantly 

greater than zero. Except for the café category, the coefficient for visual occurrence 

statistics exceeds that for semantic relatedness, indicating a stronger influence of visual 

experience on drawing composition. 

 

Moreover, the random effect of category was significant (p<0.001). We thus examined 

whether predictor contributions varied across scene categories, we then fitted separate 

generalized linear models with both predictors in each category (Figure 3). In all cases, 

both visual occurrence statistics and semantic relatedness remained significant, 

although their relative contributions varied across categories (Table1). The generalized 

linear models also predicted object drawing frequency when trained on all but one 

category and tested on the remaining category (see Supplementary Information), 
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suggesting an overall similar influence of visual occurrence statistics and semantic 

relatedness across categories. Finally, the complementary contribution of visual and 

semantic factors was corroborated by a simpler partial correlation analysis, where 

partialing out visual occurrence statistics still yielded significant correlations between 

semantic similarity and object drawing frequencies, and vice versa (see Supplementary 

Materials).  

 

While the above analyses show that both visual and semantic factors contribute to 

whether objects are features in a drawing, it remains unclear whether participants select 

objects primarily based on absolute frequencies (i.e., how often does a chair appear in 

a living room) or based on relative frequencies (i.e., how much more often does a char 

appear in a living room compared to other scenes). Thus, we fitted mixed-effects GLMs 

that predicted object drawing frequency from visual and semantic specificity, again 

comparing single-factor to combined-factor models (Table 2). The results showed that 

the combined-factor model including both specificity predictors did not outperform the 

model that predicted drawing frequency from scene-specificity in visual occurrence 

statistics alone. This suggests that when selecting objects based on specificity, visual 

specificity (i.e., whether an object is more often seen in one room compared to other 

rooms) trumps semantic specificity (i.e., whether an object is semantically associated 

more strongly with one category than with the others).  

 

Table 2. Regression weights and goodness-of-fit statistics for generalized linear models 

with specificity predictors. 

 

Scene 

Category 

Visual Semantic AIC BIC R2 

Full Model 0.55*** / -343.73 -328.12 0.13 

 / 1.16** -328.38 -312.77 0.05 

 0.56*** -0.05 -341.73 -322.22 0.13 

 

 

However, it is worth noting that overall model performance in this analysis was 

relatively low, as reflected in the low R² values. This suggests that specificity alone 

might not drive object selection in drawings. Rather than selecting objects because they 

are highly specific to a scene, participants may instead choose objects based on how 

frequently they appear in a given contexts regardless of how often they appear 

elsewhere. This raises another question: for infrequently drawn objects, are people 

simply selecting objects that are broadly associated with many scenes and thus go well 

with everything? Or were these infrequent objects still scene-diagnostic? To address 

this, we utilized our specificity measure to examine whether even infrequently drawn 

objects were still diagnostic for the scene categories they were drawn in. As expected, 

frequently drawn objects (those drawn in at least 40% of scenes) showed clear 

specificity both in visual occurrence statistics (all t > 4, all p < 0.0001) and semantic 

specificity (all t > 3, all p < 0.01). Critically, our analysis showed that even infrequent 
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objects (those drawn in less than 40% of scenes) retained significant specificity across 

both visual (all t > 2, all p < 0.05) and semantic measures (all t > 2, all p < 0.05; Figure 

4A, 4B), suggesting that infrequently included objects are still specifically associated 

with the target scene category (e.g., a hair dryer as a low-frequency object with high 

specificity for a bathroom), rather than simply being generic or universally compatible. 

 

 

Figure 4. Assessing visual and semantic specificity of frequent and rare objects in scene 

drawings. Both (A) visual specificity and (B) semantic specificity are significantly 

positive across drawing frequency bins, suggesting that even rarely drawn objects are, 

on average, scene-diagnostic. Error margins represent s.e.m. *p<0.05 
**p<0.01***p<0.001 

 

Discussion 

 

This study examined how visual occurrence statistics and semantic relatedness 

determine which objects are drawn when participants compose drawings of typical real-

world scenes. Across six scene categories, we demonstrate that both factors 

significantly predicted how often objects were included in the drawings, and a 

combined model explained more variance than either predictor alone. Nonetheless, 

visual occurrence statistics consistently emerged as the stronger predictor. How often 

objects appear in scenes of a certain category and how strongly they are related to the 

scene concepts predicted object drawings frequencies better than the scene-specificity 

of the objects (i.e., whether an object is more often found in or more strongly to the 

drawn scene category than to the other scene categories). Yet, even objects that were 

drawn infrequently were, on average, diagnostic for the scene category they were 

included in.  

 

Producing a typical scene drawing necessitates the retrieval of relevant objects from 

long-term memory. Based on the classical schema theory (Biederman et al., 1982; 

Boyce et al., 1989), participants initially active a semantic representation of the scene 

category from long-term memory. They then use prediction of expected semantic 

associations between the objects and scenes to guide visual information gathering (Bar, 

2004; Oliva & Torralba, 2007; Leroy et al., 2020). These scene representations 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2025. ; https://doi.org/10.1101/2025.09.15.676247doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.15.676247
http://creativecommons.org/licenses/by-nc-nd/4.0/


constrain the candidate objects that belong in the corresponding scene. The subsequent 

retrieval of objects is likely constrained by the structure of the scene, such as the typical 

spatial distributions of objects (Bar, 2004; Kaiser et al., 2019; Kaiser et al., 2015; Võ et 

al., 2019) and the spatial layout of whole scenes (Kaiser & Cichy, 2021). Critically, 

detailed representations of objects within scenes rely heavily on visual long-term 

memory (Brady et al., 2008), which is shaped by everyday visual statistical learning 

(Stansbury et al., 2013). Through repeated exposure to visual occurrence statistics in 

daily life, participants implicitly learn the typical composition and spatial arrangement 

of objects, enabling them to accurately predict and reconstruct detailed object 

information during the drawing process. Thus, both semantic and visual formats jointly 

contribute to the retrieval and representation of typical scenes. Interestingly, the 

observed dominance of visual occurrence statistics in predicting object frequency in 

drawings may reflect the fundamental role of real-world visual experience in shaping 

scene representations stored in long-term memory. Specifically, repeated visual 

encounters with objects in particular scene contexts likely strengthen their internal 

representations, making these frequently encountered objects more easily retrievable 

and visually detailed during reconstruction (Brady, Konkle, & Alvarez, 2009; Torralba 

et al., 2016).  

 

On the other hand, the relatively weaker performance of our semantic predictor might 

partly stem from the hubness problem in word2vec-based semantic measurement 

(Schnabel et al., 2015). Specifically, when words are projected into high-dimensional 

vector spaces, “hubs” appearing as nearest neighbors to a disproportionately large 

number of other points (Radovanovic et al., 2010). For example, “kitchen” becomes a 

hub that attracts objects to similar distances, which caused a narrow similarity range. 

This problem might compress the distribution of semantic associations, causing many 

scene-object pairs to tightly cluster within a restricted similarity band. Therefore, the 

low variance likely limits the measure's ability to explain frequency values. Future 

studies could apply models that yield more variability and thus diagnostic power, such 

as BERT-based (Devlin et al., 2019) and CLIP-based (Radford et al., 2021) 

measurements.  

nau mattias 

Furthermore, scene representations stored in memory are rooted in differences in 

participants' visual diets and may thus differ substantially between individuals (Engeser 

et al., 2025). In this study, we utilized object frequencies derived from the ADE20K 

image database and semantic associations from word2vec model as proxies for real-

world visual experience and conceptual knowledge. Despite essentially ignoring all 

inter-individual variance, this approach still predicted drawing content, highlighting the 

potential of this method to assess internal visual representations. Future research could 

incorporate more individualized measures, such as individual photographic exposure 

logs, personal digital archives, or models trained on bespoke cultural and linguistic 

backgrounds. Such refinements might better characterize visual and semantic 

contributions on the individual or group level, thereby yielding more accurate 

predictions from visual and semantic factors. 
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Interestingly, the specificity of an object for a given scene category (i.e., whether an 

object was by itself diagnostic for the scene category) was a relatively weak predictor 

of object drawing frequency. This suggests that participants adopted a task-specific 

mindset in which they mainly focused on absolute object occurrence statistics that were 

best suited to maximize scene typicality (Wiesmann & Võ., 2023). If our task shifted 

from “draw a typical bedroom” to “draw the most diagnostic bedroom,” object selection 

should pivot towards a greater weighting of specificity, increasing the contribution of 

items that are perhaps rarer but more exclusive to the category. It is also worth noting 

that our specificity measure was only computed relative to the five alternative 

categories in the current set. Future work could compute the scene-specificity of objects 

in relation to a broader set of reference categories to more accurately gauge specificity.  

 

An additional contribution of this work is the public release of a large, object‑annotated 

database of human typical scene drawings, the Room Drawings Dataset, which 

containing more than one thousand drawings across six categories (see Materials and 

Methods). Because each drawing comes with category and object labels and participant 

information, the dataset supports a wide range of secondary analyses, for instance, 

training and testing computational models on the drawings; comparing visual vs. 

semantic predictors across populations; benchmarking typical scene construction in 

clinical or developmental cohorts; and linking typical drawing content to scene-

selective neural responses. Furthermore, the dataset allows for easily appending new 

drawings, new scene categories, additional object codes, or supplemental metadata. We 

hope this resource will serve as a useful resource for modeling scene perception and 

cognition. 

 

In sum, our findings reveal visual occurrence statistics and semantic relatedness jointly 

predict the composition of typical scene drawings. Visual frequency exerts the stronger 

influence on which core objects are rendered, and even infrequent drawn objects still 

contributing to category identity. These insights provide a new behavioral window onto 

the internal representations of the world that support human scene understanding across 

individuals. 

 

Supplementary Materials 

 

Partial correlation analysis 

 

To disentangle the contributions of visual occurrence statistics and semantic relatedness, 

we also conducted partial correlation analyses within each scene category. Controlling 

for semantic relatedness, object frequency in drawings remained strongly correlated 

with visual occurrence statistics in every category: bathroom: r=0.66, p<0.001; 

bedroom: r=0.61, p<0.001; café: r=0.74, p<0.001; kitchen: r=0.72, p<0.001; living 

room: r=0.60, p<0.001; office: r=0.87, p<0.001; Conversely, when controlling for 

visual occurrence statistics, object frequency remained significantly correlated with 
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semantic relatedness in most categories: bathroom: r=0.51, p=0.001; bedroom: r=0.24, 

p=0.03; café: r=0.60, p <0.001; living room: r=0.33, p=0.002; kitchen: r=0.24, p=0.03. 

but not office: r=0.07, p=0.71. These results confirm that both predictors uniquely 

account for variance in object drawing frequency, with visual occurrence statistics 

offering particularly robust predictions. 

 

Cross-validation analysis 

 

To evaluate the model’s ability to generalize across scene categories, we conducted a 

leave-one-category-out cross validation using a beta-binomial regression with visual 

occurrence statistics, semantic relatedness and both factors as predictors, separately. In 

each iteration, the model was trained on five categories and tested on the sixth. 

Predictive accuracy was assessed by the coefficient of determination,  

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

where RSS is the residual sum of squares and TSS is the total sum of squares. The 

detailed R2 was listed in Table S. 

 

Table S. R2 for models trained on visual only, semantic only and combined factors 

 

R
2             Models

 
Visual only Semantic only Combined  

Bathroom 0.56 0.25 0.67 

Bedroom 0.47 0.25 0.48 

Café  0.32 0.14 0.43 

Living room 0.22 0.02 0.35 

Kitchen 0.57 0.07 0.56 

Office 0.63 0.22 0.67 

Averaged 0.46 0.16 0.53 
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