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Abstract

Imagine you are asked to draw a typical bedroom, what would you put on paper? Your
choice of objects is likely to depend on visual occurrence statistics (i.e., the objects
present in previously encountered bedrooms) and semantic relations between objects
and scenes (i.e., the semantic relationship between the bedroom and its constituent
objects). To investigate how these two factors contribute to the composition of typical
scene drawings, we analyzed 1,192 drawings of six indoor scene categories, obtained
from 303 participants. For each object featured in the drawings, we estimated its visual
occurrence frequency from the ADE20K dataset of annotated scene images, and its
semantic relatedness to the scene concept from a word2vec language processing model.
Across all scenes of a given category, generalized linear models revealed that visual
and conceptual factors both predicted the likelihood of an object featuring in the scene
drawings, with a combined model outperforming both single-factor models. We further
computed the visual and semantic specificity of objects for a given scene, that is, how
diagnostic an object is for the scene. Object specificity offered only weak predictive
power when predicting the selection of objects, yet even infrequently drawn objects
remained diagnostic of their scenes. Taken together, we show that visual and conceptual
factors jointly shape the composition of typical scene drawings. By releasing a large
dataset of typical scene drawings alongside this work, we further provide a starting
point for future studies exploring other critical properties of human drawings.
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Introduction

Drawing is a fundamental form of human communication. Humans have employed
drawings to communicate ideas, express emotions and share experiences for at least
40,000 years (Aubert et al., 2014; Hoffmann et al., 2018). In modern society, drawings
continue to serve diverse functions. For instance, designers use drawings to visualize
ideas (Goldschmidt., 2014), artists use drawings to externalize imagination (Fish &
Scrivener., 1990), clinicians use drawings to diagnose and classify neurological
disorders (Agrell., 1998; Wechsler., 2009). During many everyday activities, people
draw to alleviate boredom or to enhance concentration (Andrade., 2010). Contrasting
this prevalence of drawings, we know relatively little about how people decide which
elements to include when composing a drawing. This question is particularly evident
when drawings of complex scenes are considered: which objects do people draw to
convey a certain scene, say a living room? A better understanding of the composition
of such drawings may shed a new light on how people translate perceptual and memory
representations into visible outputs.

Such insights are also crucial for researchers in cognitive science and neuroscience that
use drawing as a tool to characterize the nature of internal representations (Engeser et
al., 2025; Fan et al., 2023; Roberts & Wammes, 2021). For instance, in development
research, drawings are used to investigate the developmental trajectory of visual object
representations (Karmiloff-Smith., 1990; Long et al., 2019; Long et al., 2024). In
memory research, successes and failures in memory can be captured by how well
human drawings during recall align with or deviate from the studied materials (Metzger.,
1936; Bainbridge et al., 2019; Bainbridge & Baker., 2020; Fan et al., 2023). Further, in
perception research, drawings provide descriptions of participants’ world models,
which can in turn be used to predict perception (Engeser et al., 2025; Morgan et al.,
2019; Wang et al., 2024, 2025). A better understanding of how people compose their
drawings could inform the potential and limitations of studies using drawing as a
methodological tool.

To understand how people compose drawings of natural scenes, we analyzed more than
1,000 drawings of six scene categories from more than 300 participants. All participants
were asked to draw a typical instance of a scene category (e.g., a typical living room),
after briefly thinking about the scene contents and then drawing within a relatively
liberal time constraint (Wang et al., 2024, 2025). The full set of scene drawings, the
Room Drawings Dataset, is released alongside this publication (see Materials and
Methods), providing a rich benchmark dataset of evaluating diverse aspects of drawing
composition in future studies.

In the current study, we used the dataset to ask how well the object composition in
drawings from each scene category could be predicted by two complementary factors:
(1) visual occurrence statistics, that is, the frequency with which the individual objects
are encountered in a given scene category in the real world, and (ii) semantic similarity,
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that is, the semantic relatedness between the scene concept and the individual object
concepts.

First, people’s decisions about which objects are drawn for a given category should
predict on how frequently the objects are commonly found in scenes of that category.
In bathrooms, we much more often see a sink than a table, so we should draw sinks
more often than tables. Most scenes are reliably associated with such prominent scene-
and space-defining objects (Bar, 2004; Bar & Aminoft, 2003; Oliva & Torralba, 2007,
Vo etal., 2019). Here, we quantified such visual occurrence statistics by assessing how
frequently individual objects appear within images real-world scene categories.
Specifically, we used the annotated ADE20K scene database (Zhou et al., 2017; Zhou
et al., 2018) and computed for a set of scene categories how often individual objects
featured in images of that category (e.g., how often is a sink found in images of
bathrooms).

Second, the object composition of a drawing may not just be shaped by visual
occurrence statistics. It may also depend on information stored in conceptual
representations, which do not necessarily mirror unfiltered visual experience. During
drawing, people need to recall relevant objects from long-term memory. Such long-
term memory for real-world objects can be stored in structured conceptual spaces
(Brady et al., 2008; Konkle et al., 2010), and retrieval from such conceptual spaces may
depend on the semantic similarity between a scene concept and the candidate object
concepts. Here, we quantified such semantic similarity by assessing the similarity of
object and scene concepts in a large language model (word2vec; Mikolov et al., 2013).
Specifically, we computed the cosine similarity between a set of scene category
concepts and individual object concepts in this model (e.g., how similar is the concept
“sink™ to the concept “bathroom”).

These two predictors enabled us to test how visual occurrence statistics and semantic
relatedness contribute to the object composition in a set of more than 1,000 scene

drawings spanning six categories.

Materials and methods

Participants

A total of 303 participants (26.14+4.78 years+SD, 100/201/2 male/female/other)
provided scene drawings. Of these, 101 participants (25.20 +4.07 years=SD, 24/77
male/female) were tested online in the UK (recruited at the University of York), and
202 participants (26.62+5.04 years, 76/124/2 male/female/other) were tested in a
laboratory setting in Germany (recruited at Freie Universitit Berlin and Justus-Liebig-
Universitit Giessen). Procedures were approved by the ethics committees of the
Department of Psychology, University of York, the Department of Education and
Psychology, Freie Universitdt Berlin, and the ethics committee of the Justus-Liebig-
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Universitdt GieBBen, respectively, and adhered to the Declaration of Helsinki.

Drawing sessions

The drawings used here were produced in drawing sessions across multiple experiments,
including two published studies (Wang et al., 2024, 2025) and other still unpublished
work. Drawing sessions were conducted either online or in-person in a laboratory
setting. Online sessions were conducted via Skype. Here, participants provided their
drawings using a pencil, eraser, and ruler on A4 paper. For each drawing, participants
had 1 minute to plan and 3 minutes 30 seconds to complete the drawing. Participants
drew typical versions of three scene categories (bedroom, kitchen, living room). In the
lab-based drawings sessions, participants provided their drawings using an Apple
Pencil on an Apple iPad with the Sketchbook App. Each participant was given 30
seconds to plan and 4 minutes to complete each drawing. A group of participants (N=85)
drew six typical scene categories (bathroom, bedroom, café, kitchen, living room,
office), while another group (N=115) drew four categories (bathroom, bedroom,
kitchen, living room). In all sessions, participants were instructed to draw the most
typical representation of each room (Figure 1), rather than their own rooms or an
aesthetically appealing version of the room. Participants were instructed to draw into a
pre-defined perspective grid, which they drew themselves according to the
experimenter’s instructions (online sessions) or which was present on the iPad screen
from the outset (lab-based sessions). Further details on the drawing sessions are
available in our previous studies (Wang et al., 2024, 2025).

Object annotation

For each drawing, all depicted objects were manually annotated. Overall, typical
bathroom drawings consisted of an average of 6.3 different objects (SD = 1.6, range =
[4, 12]; multiple instances of the same object were not counted), with the three most
frequent objects sink (100%), toilet (96%), and shower (86%). Bedrooms consisted of
an average of 8.3 objects (SD=2.1, range = [4, 13]), with the three most frequent objects
bed (100%), pillow (93%), and window (74%). Cafés consisted of an average of 7.4
objects (SD=3.1, range=[3, 19]), with the three most frequent objects table (99%), chair
(97%), and counter (86%). Kitchens consisted of an average of 8.7 objects (SD= 3.4,
range = [4,17]), with the three most frequent objects cupboard (99%), stove (98%), and
sink (90%). Living rooms consisted of an average of 7.8 objects (SD=2.5, range =
[4,14]), with the three most frequent objects sofa (100%), television (89%) and
television stand (77%). Offices consisted of an average of 7.3 objects (SD =3.1, range
= [4, 15]), with the three most frequent objects table (100%), chair (94%), and window
(75%). Full annotation details are provided in the supplementary materials. From these
annotations, we computed the occurrence frequency of each object within its respective
scene category.
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Quantifying visual occurrence statistics and semantic relatedness

To quantify visual occurrence statistics across the exemplars of each scene category, we
determined the occurrence frequencies of the annotated objects in each scene category
by referencing the ADE20K dataset (Zhou et al., 2017; Zhou et al., 2018). Specifically,
we queried the database for each object annotated in the drawings and the
corresponding scene category and calculated each object’s frequency of occurrence
across all the scenes for each category. To quantify semantic relatedness between object
and scene concepts, we computed the similarity between the word representing each
object annotated in the drawings (e.g., “shower” in English, “Dusche” in German) and
the corresponding scene concepts (e.g., “bathroom” in English, “Badezimmer” in
German) using a word2vec model. We used word vectors pre-trained on German for
the German participants and on English for the UK participants, and supplied words in
each group’s native language. Both training resources came from the Common Crawl
and Wikipedia corpora using fastText (Grave et al., 2018). By calculating the cosine
similarity between the object and scene concept, we quantified how strongly each object
is semantically related to the scene category it appeared in.

Modelling object drawing frequencies

To examine the relationship between object drawing frequency, visual occurrence
statistics, and semantic relatedness, we fitted generalized linear models to predict object
drawing frequencies using (i) occurrence statistics only, (i1) semantic relatedness only,
and (iii) both predictors together. As the dependent variable represented a bounded
proportion (i.e., % of drawings that contained the object), we chose a Beta-binomial
regression approach (i.e., a generalized linear model with a Beta function as the link
function, Ferrasi & Cribari-Neto, 2004). To assess the overall effect of visual
experience and conceptual knowledge on object occurrence frequency across all
categories, we fitted a generalized linear mixed-effects model that included category as
a random effect as well as visual experience and/or conceptual knowledge as fixed
effects. We then assessed whether a combined model better explained drawing
frequencies better than occurrence statistics or semantic relatedness along. To assess
the stability of the results across categories, we further fitted the same model
individually for every scene category.

We explored the composition of the drawings further by asking how the specificity of
an object for a given scene category (e.g., a stove is highly specific for a kitchen, as it
almost exclusively appears there, but a window is not) predicts drawing frequency. To
quantify specificity, we calculated (i) the scene-specificity of an object in visual
occurrence statistics, defined as the normalized difference between an object's
frequency in its corresponding scene category and its average frequency across the
other scene categories, the (ii) the scene-specificity of an object in semantic relatedness,
defined as the normalized difference between an object concept's cosine similarity to
its corresponding scene concept and its average cosine similarity to the other scene
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concepts in the language model. Specificity was computed using the following formula:
F/S(o,s) — F_/S (0,—5)
F/S(o,s) + F_/S (0,—5)

F: object frequency, S: semantic relatedness, o: object, s: corresponding scene, -s: the

SpecF /S (o|s) =

other scenes.

Then, we fitted mixed effects models to predict object frequency in drawings from
visual and semantic specificity. We further asked whether infrequently drawn objects
are still diagnostic for their respective scene category (and if so, to which extent) or
whether they mainly constitute generic “filler” objects that are equally appropriate for
our range of categories (like windows or bins). To this end, we ordered all objects by
their drawing frequency and binned them into six ranges: objects featured in 0-10%,
10-20%, 20-30%, 30-40%, 40-70%, or 70-100% of scenes. We varied bin sizes across
the frequency range as there were more objects that appeared relatively infrequently.
We then assessed whether objects across frequency bins were consistently diagnostic
for the scene category.

The ADE20K annotations analysis and the word2vec analysis were conducted in
Python. All further statistical analyses were conducted in R.

Data, material and code availability

Data, and code are accessible on the Open Science Framework (OSF), available at
https://osf.io/p2fa6/. We further release all drawings, together with participant
information and annotations, in the Room Drawings Dataset, available at:
https://osf.io/byu24/.
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Figure 1. Overview of the drawing sessions and annotation procedure. (A) Participants
draw typical versions of indoor scene categories on paper or an iPad. (B) An example
drawing of a living room. Note that a common perspective was enforced by a
perspective grid shown to the participants from the outset. (C) We manually annotated
all individual objects in the drawings. Each object instance was only counted once (i.e.,
objects were coded as present or absent).
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Results

We first visualized how often different objects were drawn for each scene category. We
generated word clouds (Heimerl et al., 2014) for each category, in which font size
reflects how frequently each object was drawn (Figure 2). These descriptive data show
that each scene featured prominent and diagnostic objects that were drawn across many
instances of the scene (e.g., a bed in the bedroom).
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Figure 2. Word clouds representing the drawing frequency of objects across scene
categories. The size of the words represents how frequently the object was featured in
the drawings.

To evaluate how visual occurrence statistics and semantic relatedness contribute to the
composition of scene drawings, we fitted three mixed-effects models that predicted
object drawing frequency from either (i) only visual occurrence statistics, (ii) only
semantic relatedness, or (ii1) both factors combined. Each model additionally featured
category as a random effect. Model estimates and fit indices are reported in Table 1
(“Full Model”). A comparison of Akaike Information Criterion (AIC) and Bayesian
Information Criteria (BIC) revealed that the combined model provided the best fit (AIC
= -679.50, BIC = -659.98), with a conditional R? of 0.81. These results suggest that
visual occurrence statistics are a good predictor of object drawing frequencies in scene
drawings. Yet, semantic similarity between scene and object concepts explains
additional variance in the drawing composition that is not captured by visual statistics.
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Table 1. Regression weights and goodness-of-fit statistics for the generalized linear

models.
Scene Visual Semantic AIC BIC R2
Category
Full Model — 4.78™"" / -645.65 -630.04 0.77
/ 6.59"" -436.85 -421.24 0.54

433" 321" -679.50  -659.98  0.81
Bathroom 439" 5.99™" -92.89 -86.12

0.67
Bedroom 456" 2.10" -156.11  -146.39  0.64
Café 6.03"" 10.37""  -56.86 -50.52 0.65
Kitchen 436" 2.44" -138.78  -129.10 0.61
Living room  3.63™" 3.30" -158.63  -148.86  0.51
Office 6.69"" 2.69° -89.46 -82.91 0.74
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Figure 3. Visualization of generalized linear model fits when predicting object drawing
frequencies from visual occurrence statistics and semantic relatedness, separately for
the six categories. In all categories, both predictors yielded coefficients significantly
greater than zero. Except for the café category, the coefficient for visual occurrence

statistics exceeds that for semantic relatedness, indicating a stronger influence of visual
experience on drawing composition.

Moreover, the random effect of category was significant (p<0.001). We thus examined
whether predictor contributions varied across scene categories, we then fitted separate
generalized linear models with both predictors in each category (Figure 3). In all cases,
both visual occurrence statistics and semantic relatedness remained significant,
although their relative contributions varied across categories (Tablel). The generalized
linear models also predicted object drawing frequency when trained on all but one

category and tested on the remaining category (see Supplementary Information),
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suggesting an overall similar influence of visual occurrence statistics and semantic
relatedness across categories. Finally, the complementary contribution of visual and
semantic factors was corroborated by a simpler partial correlation analysis, where
partialing out visual occurrence statistics still yielded significant correlations between
semantic similarity and object drawing frequencies, and vice versa (see Supplementary
Materials).

While the above analyses show that both visual and semantic factors contribute to
whether objects are features in a drawing, it remains unclear whether participants select
objects primarily based on absolute frequencies (i.e., how often does a chair appear in
a living room) or based on relative frequencies (i.e., how much more often does a char
appear in a living room compared to other scenes). Thus, we fitted mixed-effects GLMs
that predicted object drawing frequency from visual and semantic specificity, again
comparing single-factor to combined-factor models (Table 2). The results showed that
the combined-factor model including both specificity predictors did not outperform the
model that predicted drawing frequency from scene-specificity in visual occurrence
statistics alone. This suggests that when selecting objects based on specificity, visual
specificity (i.e., whether an object is more often seen in one room compared to other
rooms) trumps semantic specificity (i.e., whether an object is semantically associated
more strongly with one category than with the others).

Table 2. Regression weights and goodness-of-fit statistics for generalized linear models
with specificity predictors.

Scene Visual Semantic AIC BIC R?

Category

Full Model 0.55™" / -343.73  -328.12 0.13
/ 1.16™ -328.38 -312.77 0.05
0.56™" -0.05 -341.73  -322.22  0.13

However, it is worth noting that overall model performance in this analysis was
relatively low, as reflected in the low R? values. This suggests that specificity alone
might not drive object selection in drawings. Rather than selecting objects because they
are highly specific to a scene, participants may instead choose objects based on how
frequently they appear in a given contexts regardless of how often they appear
elsewhere. This raises another question: for infrequently drawn objects, are people
simply selecting objects that are broadly associated with many scenes and thus go well
with everything? Or were these infrequent objects still scene-diagnostic? To address
this, we utilized our specificity measure to examine whether even infrequently drawn
objects were still diagnostic for the scene categories they were drawn in. As expected,
frequently drawn objects (those drawn in at least 40% of scenes) showed clear
specificity both in visual occurrence statistics (all t > 4, all p < 0.0001) and semantic
specificity (all t > 3, all p <0.01). Critically, our analysis showed that even infrequent
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objects (those drawn in less than 40% of scenes) retained significant specificity across
both visual (all t > 2, all p < 0.05) and semantic measures (all t > 2, all p < 0.05; Figure
4A, 4B), suggesting that infrequently included objects are still specifically associated
with the target scene category (e.g., a hair dryer as a low-frequency object with high
specificity for a bathroom), rather than simply being generic or universally compatible.
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Figure 4. Assessing visual and semantic specificity of frequent and rare objects in scene
drawings. Both (A) visual specificity and (B) semantic specificity are significantly
positive across drawing frequency bins, suggesting that even rarely drawn objects are,
on average, scene-diagnostic. FError margins represent s.e.m. p<0.05
*p<0.01""p<0.001

Discussion

This study examined how visual occurrence statistics and semantic relatedness
determine which objects are drawn when participants compose drawings of typical real-
world scenes. Across six scene categories, we demonstrate that both factors
significantly predicted how often objects were included in the drawings, and a
combined model explained more variance than either predictor alone. Nonetheless,
visual occurrence statistics consistently emerged as the stronger predictor. How often
objects appear in scenes of a certain category and how strongly they are related to the
scene concepts predicted object drawings frequencies better than the scene-specificity
of the objects (i.e., whether an object is more often found in or more strongly to the
drawn scene category than to the other scene categories). Yet, even objects that were
drawn infrequently were, on average, diagnostic for the scene category they were
included in.

Producing a typical scene drawing necessitates the retrieval of relevant objects from
long-term memory. Based on the classical schema theory (Biederman et al., 1982;
Boyce et al., 1989), participants initially active a semantic representation of the scene
category from long-term memory. They then use prediction of expected semantic
associations between the objects and scenes to guide visual information gathering (Bar,
2004; Oliva & Torralba, 2007; Leroy et al., 2020). These scene representations
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constrain the candidate objects that belong in the corresponding scene. The subsequent
retrieval of objects is likely constrained by the structure of the scene, such as the typical
spatial distributions of objects (Bar, 2004; Kaiser et al., 2019; Kaiser et al., 2015; V0 et
al., 2019) and the spatial layout of whole scenes (Kaiser & Cichy, 2021). Critically,
detailed representations of objects within scenes rely heavily on visual long-term
memory (Brady et al., 2008), which is shaped by everyday visual statistical learning
(Stansbury et al., 2013). Through repeated exposure to visual occurrence statistics in
daily life, participants implicitly learn the typical composition and spatial arrangement
of objects, enabling them to accurately predict and reconstruct detailed object
information during the drawing process. Thus, both semantic and visual formats jointly
contribute to the retrieval and representation of typical scenes. Interestingly, the
observed dominance of visual occurrence statistics in predicting object frequency in
drawings may reflect the fundamental role of real-world visual experience in shaping
scene representations stored in long-term memory. Specifically, repeated visual
encounters with objects in particular scene contexts likely strengthen their internal
representations, making these frequently encountered objects more easily retrievable
and visually detailed during reconstruction (Brady, Konkle, & Alvarez, 2009; Torralba
etal., 2016).

On the other hand, the relatively weaker performance of our semantic predictor might
partly stem from the hubness problem in word2vec-based semantic measurement
(Schnabel et al., 2015). Specifically, when words are projected into high-dimensional
vector spaces, “hubs” appearing as nearest neighbors to a disproportionately large
number of other points (Radovanovic et al., 2010). For example, “kitchen” becomes a
hub that attracts objects to similar distances, which caused a narrow similarity range.
This problem might compress the distribution of semantic associations, causing many
scene-object pairs to tightly cluster within a restricted similarity band. Therefore, the
low variance likely limits the measure's ability to explain frequency values. Future
studies could apply models that yield more variability and thus diagnostic power, such
as BERT-based (Devlin et al., 2019) and CLIP-based (Radford et al., 2021)
measurements.

nau mattias

Furthermore, scene representations stored in memory are rooted in differences in
participants' visual diets and may thus differ substantially between individuals (Engeser
et al., 2025). In this study, we utilized object frequencies derived from the ADE20K
image database and semantic associations from word2vec model as proxies for real-
world visual experience and conceptual knowledge. Despite essentially ignoring all
inter-individual variance, this approach still predicted drawing content, highlighting the
potential of this method to assess internal visual representations. Future research could
incorporate more individualized measures, such as individual photographic exposure
logs, personal digital archives, or models trained on bespoke cultural and linguistic
backgrounds. Such refinements might better characterize visual and semantic
contributions on the individual or group level, thereby yielding more accurate
predictions from visual and semantic factors.
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Interestingly, the specificity of an object for a given scene category (i.e., whether an
object was by itself diagnostic for the scene category) was a relatively weak predictor
of object drawing frequency. This suggests that participants adopted a task-specific
mindset in which they mainly focused on absolute object occurrence statistics that were
best suited to maximize scene typicality (Wiesmann & V0., 2023). If our task shifted
from “draw a typical bedroom” to “draw the most diagnostic bedroom,” object selection
should pivot towards a greater weighting of specificity, increasing the contribution of
items that are perhaps rarer but more exclusive to the category. It is also worth noting
that our specificity measure was only computed relative to the five alternative
categories in the current set. Future work could compute the scene-specificity of objects
in relation to a broader set of reference categories to more accurately gauge specificity.

An additional contribution of this work is the public release of a large, object-annotated
database of human typical scene drawings, the Room Drawings Dataset, which
containing more than one thousand drawings across six categories (see Materials and
Methods). Because each drawing comes with category and object labels and participant
information, the dataset supports a wide range of secondary analyses, for instance,
training and testing computational models on the drawings; comparing visual vs.
semantic predictors across populations; benchmarking typical scene construction in
clinical or developmental cohorts; and linking typical drawing content to scene-
selective neural responses. Furthermore, the dataset allows for easily appending new
drawings, new scene categories, additional object codes, or supplemental metadata. We
hope this resource will serve as a useful resource for modeling scene perception and
cognition.

In sum, our findings reveal visual occurrence statistics and semantic relatedness jointly
predict the composition of typical scene drawings. Visual frequency exerts the stronger
influence on which core objects are rendered, and even infrequent drawn objects still
contributing to category identity. These insights provide a new behavioral window onto
the internal representations of the world that support human scene understanding across
individuals.

Supplementary Materials

Partial correlation analysis

To disentangle the contributions of visual occurrence statistics and semantic relatedness,
we also conducted partial correlation analyses within each scene category. Controlling
for semantic relatedness, object frequency in drawings remained strongly correlated
with visual occurrence statistics in every category: bathroom: r=0.66, p<0.001;
bedroom: r=0.61, p<0.001; café: r=0.74, p<0.001; kitchen: r=0.72, p<0.001; living
room: 1=0.60, p<0.001; office: r=0.87, p<0.001; Conversely, when controlling for
visual occurrence statistics, object frequency remained significantly correlated with
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semantic relatedness in most categories: bathroom: r=0.51, p=0.001; bedroom: r=0.24,
p=0.03; café: =0.60, p <0.001; living room: r=0.33, p=0.002; kitchen: r=0.24, p=0.03.
but not office: =0.07, p=0.71. These results confirm that both predictors uniquely
account for variance in object drawing frequency, with visual occurrence statistics
offering particularly robust predictions.

Cross-validation analysis

To evaluate the model’s ability to generalize across scene categories, we conducted a
leave-one-category-out cross validation using a beta-binomial regression with visual
occurrence statistics, semantic relatedness and both factors as predictors, separately. In
each iteration, the model was trained on five categories and tested on the sixth.

Predictive accuracy was assessed by the coefficient of determination,
RSS
R?=1-——
where RSS is the residual sum of squares and TSS is the total sum of squares. The
detailed R? was listed in Table S.

Table S. R? for models trained on visual only, semantic only and combined factors

R2 Models  Visual only Semantic only Combined
Bathroom 0.56 0.25 0.67
Bedroom 0.47 0.25 0.48
Café 0.32 0.14 0.43
Living room 0.22 0.02 0.35
Kitchen 0.57 0.07 0.56
Office 0.63 0.22 0.67
Averaged 0.46 0.16 0.53
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